تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Lucas Number
المؤلف: Borwein, J. M. and Borwein, P. B.
المصدر: Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity. New York: Wiley
الجزء والصفحة: ...
24-9-2020
1879
The Lucas numbers are the sequence of integers defined by the linear recurrence equation
(1) |
with and . The th Lucas number is implemented in the Wolfram Language as LucasL[n].
The values of for , 2, ... are 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, ... (OEIS A000204).
The Lucas numbers are also a Lucas sequence and are the companions to the Fibonacci numbers and satisfy the same recurrence.
The number of ways of picking a set (including the empty set) from the numbers 1, 2, ..., without picking two consecutive numbers (where 1 and are now consecutive) is (Honsberger 1985, p. 122).
The only square numbers in the Lucas sequence are 1 and 4 (Alfred 1964, Cohn 1964). The only triangular Lucas numbers are 1, 3, and 5778 (Ming 1991). The only cubic Lucas number is 1.
Rather amazingly, if is prime, . The converse does not necessarily hold true, however, and composite numbers such that are known as Lucas pseudoprimes.
For , 2, ..., the numbers of decimal digits in are 1, 3, 21, 209, 2090, 20899, 208988, 2089877, ... (OEIS A114469). As can be seen, the initial strings of digits settle down to produce the number 208987640249978733769..., which corresponds to the decimal digits of (OEIS A097348), where is the golden ratio. This follows from the fact that for any power function , the number of decimal digits for is given by .
The lengths of the cycles for Lucas numbers (mod ) for , 2, ... are 12, 60, 300, 3000, 30000, 300000, 300000, ... (OEIS A114307).
The analog of Binet's Fibonacci number formula for Lucas numbers is
(2) |
Another formula is
(3) |
for , where is the golden ratio and denotes the nearest integer function.
Another recurrence relation for is given by,
(4) |
for , where is the floor function.
Additional identities satisfied by Lucas numbers include
(5) |
and
(6) |
The Lucas numbers obey the negation formula
(7) |
the addition formula
(8) |
where is a Fibonacci number, the subtraction formula
(9) |
the fundamental identity
(10) |
conjugation relation
(11) |
successor relation
(12) |
double-angle formula
(13) |
multiple-angle recurrence
(14) |
multiple-angle formulas
(15) |
|||
(16) |
|||
(17) |
|||
(18) |
product expansions
(19) |
and
(20) |
square expansion,
(21) |
and power expansion
(22) |
The Lucas numbers satisfy the power recurrence
(23) |
where is a Fibonomial coefficient, the reciprocal sum
(24) |
the convolution
(25) |
the partial fraction decomposition
(26) |
where
(27) |
|||
(28) |
|||
(29) |
and the summation formula
(30) |
where
(31) |
Let be a prime and be a positive integer. Then ends in a 3 (Honsberger 1985, p. 113). Analogs of the Cesàro identities for Fibonacci numbers are
(32) |
(33) |
where is a binomial coefficient.
( divides ) iff divides into an even number of times. iff divides into an odd number of times. always ends in 2 (Honsberger 1985, p. 137).
Defining
(34) |
gives
(35) |
(Honsberger 1985, pp. 113-114).
REFERENCES:
Alfred, Brother U. "On Square Lucas Numbers." Fib. Quart. 2, 11-12, 1964.
Borwein, J. M. and Borwein, P. B. Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity. New York: Wiley, pp. 94-101, 1987.
Brillhart, J.; Montgomery, P. L.; and Silverman, R. D. "Tables of Fibonacci and Lucas Factorizations." Math. Comput. 50, 251-260 and S1-S15, 1988.
Broadhurst, D. and Irvine, S. "Lucas Record." Post to primeform user forum. Jun. 19, 2006. https://groups.yahoo.com/group/primeform/message/7534.
Brown, J. L. Jr. "Unique Representation of Integers as Sums of Distinct Lucas Numbers." Fib. Quart. 7, 243-252, 1969.
Cohn, J. H. E. "Square Fibonacci Numbers, etc." Fib. Quart. 2, 109-113, 1964.
Dubner, H. and Keller, W. "New Fibonacci and Lucas Primes." Math. Comput. 68, 417-427 and S1-S12, 1999.
Guy, R. K. "Fibonacci Numbers of Various Shapes." §D26 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 194-195, 1994.
Hilton, P.; Holton, D.; and Pedersen, J. "Fibonacci and Lucas Numbers." Ch. 3 in Mathematical Reflections in a Room with Many Mirrors. New York: Springer-Verlag, pp. 61-85, 1997.
Hilton, P. and Pedersen, J. "Fibonacci and Lucas Numbers in Teaching and Research." J. Math. Informatique 3, 36-57, 1991-1992.
Hoggatt, V. E. Jr. The Fibonacci and Lucas Numbers. Boston, MA: Houghton Mifflin, 1969.
Honsberger, R. "A Second Look at the Fibonacci and Lucas Numbers." Ch. 8 in Mathematical Gems III. Washington, DC: Math. Assoc. Amer., 1985.
Koshy, T. Fibonacci and Lucas Numbers with Applications. New York: Wiley, 2001.
Leyland, P. ftp://sable.ox.ac.uk/pub/math/factors/lucas.Z
Lifchitz, H. and Lifchitz, R. "PRP Top Records." https://www.primenumbers.net/prptop/searchform.php?form=L(n).
Ming, L. "On Triangular Lucas Numbers." Applications of Fibonacci Numbers, Vol. 4 (Ed. G. E. Bergum, A. N. Philippou, and A. F. Horadam). Dordrecht, Netherlands: Kluwer, pp. 231-240, 1991.
Sloane, N. J. A. Sequences A000204/M2341, A001606/M0961, A005479/M2627, A068070, A097348, A114469, and A114307 in "The On-Line Encyclopedia of Integer Sequences."