1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية الاعداد :

Lucas Number

المؤلف:  Borwein, J. M. and Borwein, P. B.

المصدر:  Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity. New York: Wiley

الجزء والصفحة:  ...

24-9-2020

1879

Lucas Number

The Lucas numbers are the sequence of integers {L_n}_(n=1)^infty defined by the linear recurrence equation

 L_n=L_(n-1)+L_(n-2)

(1)

with L_1=1 and L_2=3. The nth Lucas number is implemented in the Wolfram Language as LucasL[n].

The values of L_n for n=1, 2, ... are 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, ... (OEIS A000204).

The Lucas numbers are also a Lucas sequence V_n(1,-1) and are the companions to the Fibonacci numbers F_n and satisfy the same recurrence.

The number of ways of picking a set (including the empty set) from the numbers 1, 2, ..., n without picking two consecutive numbers (where 1 and n are now consecutive) is L_n (Honsberger 1985, p. 122).

The only square numbers in the Lucas sequence are 1 and 4 (Alfred 1964, Cohn 1964). The only triangular Lucas numbers are 1, 3, and 5778 (Ming 1991). The only cubic Lucas number is 1.

Rather amazingly, if n is prime, L_n=1 (mod n). The converse does not necessarily hold true, however, and composite numbers n such that L_n=1 (mod n) are known as Lucas pseudoprimes.

For n=1, 2, ..., the numbers of decimal digits in L_(10^n) are 1, 3, 21, 209, 2090, 20899, 208988, 2089877, ... (OEIS A114469). As can be seen, the initial strings of digits settle down to produce the number 208987640249978733769..., which corresponds to the decimal digits of lnphi=0.2089876... (OEIS A097348), where phi is the golden ratio. This follows from the fact that for any power function f_n=c^n, the number of decimal digits for f_(10^n) is given by 10^nlog_(10)c.

The lengths of the cycles for Lucas numbers (mod 10^n) for n=1, 2, ... are 12, 60, 300, 3000, 30000, 300000, 300000, ... (OEIS A114307).

The analog of Binet's Fibonacci number formula for Lucas numbers is

 L_n=((1+sqrt(5))/2)^n+((1-sqrt(5))/2)^n.

(2)

Another formula is

 L_n=[phi^n]

(3)

for n>=2, where phi is the golden ratio and [x] denotes the nearest integer function.

Another recurrence relation for L_n is given by,

 L_(n+1)=|_(L_n(1+sqrt(5))+1)/2_|

(4)

for n>=4, where |_x_| is the floor function.

Additional identities satisfied by Lucas numbers include

 L_n^2-L_(n-1)L_(n+1)=5(-1)^n,

(5)

and

 sum_(k=1)^nL_k^2=L_nL_(n+1)-2.

(6)

The Lucas numbers obey the negation formula

 L_(-n)=(-1)^nL_n,

(7)

the addition formula

 L_(m+n)=1/2(5F_mF_n+L_mL_n),

(8)

where F_n is a Fibonacci number, the subtraction formula

 L_(m-n)=1/2(-1)^n(L_mL_n-5F_mF_n),

(9)

the fundamental identity

 L_n^2-5F_n^2=4(-1)^n,

(10)

conjugation relation

 L_n=F_(n-1)+F_(n+1),

(11)

successor relation

 L_(n+1)=1/2(5F_n+L_n),

(12)

double-angle formula

 L_(2n)=1/2(5F_n^2+L_n^2),

(13)

multiple-angle recurrence

 L_(kn)=L_kL_(k(n-1))-(-1)^kL_(k(n-2)),

(14)

multiple-angle formulas

L_(kn) = 1/(2^(k-1))sum_(i=0)^(|_k/2_|)(k; 2i)5^iF_n^(2i)L_n^(k-2i)

(15)

= sum_(i=0)^(|_k/2_|)k/(k-i)(k-i; i)(-1)^(i(n+1))L_n^(k-2i)

(16)

= {sum_(i=0)^(k/2)k/(k-i)(k-i; i)(-1)^(in)5^(k/2-i)F_n^(k-2i) for k even; L_nsum_(i=0)^(|_k/2_|)(k-1-i; i)(-1)^(in)5^(|_k/2_|-i)F_n^(k-1-2i) for k odd

(17)

= sum_(i=0)^(k)(k; i)L_iF_n^iF_(n-1)^(k-i),

(18)

product expansions

 F_mL_n=F_(m+n)+(-1)^nF_(m-n)

(19)

and

 F_mF_n=1/5[L_(m+n)-(-1)^nL_(m-n)],

(20)

square expansion,

 L_n^2=L_(2n)+2(-1)^n,

(21)

and power expansion

 L_n^k=1/2sum_(i=0)^k(k; i)(-1)^(in)L_((k-2i)n).

(22)

The Lucas numbers satisfy the power recurrence

 sum_(j=0)^(t+1)(-1)^(j(j+1)/2)[t+1; j]_FL_(n-j)^t=0,

(23)

where [a; b]_F is a Fibonomial coefficient, the reciprocal sum

 sum_(k=1)^n((-1)^k)/(L_kL_(k+a))=(F_n)/(F_a)sum_(k=1)^a((-1)^k)/(L_kL_(k+n)),

(24)

the convolution

 sum_(k=0)^nL_kL_(n-k)=(n+2)L_n+F_n,

(25)

the partial fraction decomposition

 -5/(L_(n+a)L_(n+b)L_(n+c))=A/(L_(n+a))+B/(L_(n+b))+C/(L_(n+c)),

(26)

where

A = ((-1)^(n-a))/(F_(b-a)F_(c-a))

(27)

B = ((-1)^(n-b))/(F_(c-b)F_(a-b))

(28)

C = ((-1)^(n-c))/(F_(a-c)F_(b-c)),

(29)

and the summation formula

 sum_(k=0)^nx^kL_(ak+b)=(g(n+1)-g(0))/(1-L_ax+(-1)^ax^2),

(30)

where

 g(n)=(-1)^aL_(a(n-1)+b)x^(n+1)-L_(an+b)x^n.

(31)

Let p be a prime >3 and k be a positive integer. Then L_(2p^k) ends in a 3 (Honsberger 1985, p. 113). Analogs of the Cesàro identities for Fibonacci numbers are

 sum_(k=0)^n(n; k)L_k=L_(2n)

(32)

 sum_(k=0)^n(n; k)2^kL_k=L_(3n),

(33)

where (n; k) is a binomial coefficient.

L_n|F_m (L_n divides F_m) iff n divides into m an even number of times. L_n|L_m iff n divides into m an odd number of times. 2^nL_n always ends in 2 (Honsberger 1985, p. 137).

Defining

 D_n=|3 i 0 0 ... 0 0; i 1 i 0 ... 0 0; 0 i 1 i ... 0 0; 0 0 i 1 ... 0 0; | | | | ... | |; 0 0 0 0 ... 1 i; 0 0 0 0 ... i 1|=L_(n+1)

(34)

gives

 D_n=D_(n-1)+D_(n-2)

(35)

(Honsberger 1985, pp. 113-114).


REFERENCES:

Alfred, Brother U. "On Square Lucas Numbers." Fib. Quart. 2, 11-12, 1964.

Borwein, J. M. and Borwein, P. B. Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity. New York: Wiley, pp. 94-101, 1987.

Brillhart, J.; Montgomery, P. L.; and Silverman, R. D. "Tables of Fibonacci and Lucas Factorizations." Math. Comput. 50, 251-260 and S1-S15, 1988.

Broadhurst, D. and Irvine, S. "Lucas Record." Post to primeform user forum. Jun. 19, 2006. https://groups.yahoo.com/group/primeform/message/7534.

Brown, J. L. Jr. "Unique Representation of Integers as Sums of Distinct Lucas Numbers." Fib. Quart. 7, 243-252, 1969.

Cohn, J. H. E. "Square Fibonacci Numbers, etc." Fib. Quart. 2, 109-113, 1964.

Dubner, H. and Keller, W. "New Fibonacci and Lucas Primes." Math. Comput. 68, 417-427 and S1-S12, 1999.

Guy, R. K. "Fibonacci Numbers of Various Shapes." §D26 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 194-195, 1994.

Hilton, P.; Holton, D.; and Pedersen, J. "Fibonacci and Lucas Numbers." Ch. 3 in Mathematical Reflections in a Room with Many Mirrors. New York: Springer-Verlag, pp. 61-85, 1997.

Hilton, P. and Pedersen, J. "Fibonacci and Lucas Numbers in Teaching and Research." J. Math. Informatique 3, 36-57, 1991-1992.

Hoggatt, V. E. Jr. The Fibonacci and Lucas Numbers. Boston, MA: Houghton Mifflin, 1969.

Honsberger, R. "A Second Look at the Fibonacci and Lucas Numbers." Ch. 8 in Mathematical Gems III. Washington, DC: Math. Assoc. Amer., 1985.

Koshy, T. Fibonacci and Lucas Numbers with Applications. New York: Wiley, 2001.

Leyland, P. ftp://sable.ox.ac.uk/pub/math/factors/lucas.Z

Lifchitz, H. and Lifchitz, R. "PRP Top Records." https://www.primenumbers.net/prptop/searchform.php?form=L(n).

Ming, L. "On Triangular Lucas Numbers." Applications of Fibonacci Numbers, Vol. 4 (Ed. G. E. Bergum, A. N. Philippou, and A. F. Horadam). Dordrecht, Netherlands: Kluwer, pp. 231-240, 1991.

Sloane, N. J. A. Sequences A000204/M2341, A001606/M0961, A005479/M2627, A068070, A097348, A114469, and A114307 in "The On-Line Encyclopedia of Integer Sequences."

EN

تصفح الموقع بالشكل العمودي