1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية الاعداد :

Repunit

المؤلف:  Ball, W. W. R. and Coxeter, H. S. M

المصدر:  Mathematical Recreations and Essays, 13th ed. New York: Dover

الجزء والصفحة:  ...

27-9-2020

780

Repunit

A repunit is a number consisting of copies of the single digit 1. The term "repunit" was coined by Beiler (1966), who also gave the first tabulation of known factors.

In base-10, repunits have the form

R_n = (10^n-1)/(10-1)

(1)

= (10^n-1)/9.

(2)

Repunits R_n therefore have exactly n decimal digits. Amazingly, the squares of the repunits R_n^2 give the Demlo numbers, 1^2=111^2=121111^2=12321, ... (OEIS A002275 and A002477).

The number of factors for the base-10 repunits for n=1, 2, ... are 1, 1, 2, 2, 2, 5, 2, 4, 4, 4, 2, 7, 3, ... (OEIS A046053). The base-10 repunit probable primes R_n occur for n=2, 19, 23, 317, and 1031, 49081, 86453, 109297, and 270343 (OEIS A004023; Madachy 1979, Williams and Dubner 1986, Ball and Coxeter 1987, Granlund, Dubner 1999, Baxter 2000), where R_(1031) is the largest proven prime (Williams and Dubner 1986). T. Granlund completed a search up to 45000 in 1998 using two months of CPU time on a parallel computer. The search was extended by Dubner (1999), culminating in the discovery of the probable prime R_(49081). A number of larger repunit probable primes have since been found, as summarized in the following table.

n discoverer(s) date
49081 H. Dubner (1999, 2002) Sep. 9, 1999
86453 L. Baxter (2000) Oct. 26, 2000
109297 P.  Bourdelais (2007), H. Dubner (2007) Mar. 26-28, 2007
270343 M. Voznyy and A. Budnyy (2007) Jul. 11, 2007

Every prime repunit is a circular prime.

Repunit can be generalized to base b, giving a base-b repunit as number of the form

 M_n^((b))=(b^n-1)/(b-1).

(3)

This gives the special cases summarized in the following table.

b M_n^((b)) name
2 2^n-1 Mersenne number M_n
10 (10^n-1)/9 repunit R_n

The idea of repunits can also be extended to negative bases. Except for requiring n to be odd, the math is very similar (Dubner and Granlund 2000).

b OEIS b-repunits
-3 A066443 1, 7, 61, 547, 4921, 44287, 398581, ...
-2 A007583 1, 3, 11, 43, 171, 683, 2731, ...
2 A000225 1, 3, 7, 15, 31, 63, 127, ...
3 A003462 1, 4, 13, 40, 121, 364, ...
4 A002450 1, 5, 21, 85, 341, 1365, ...
5 A003463 1, 6, 31, 156, 781, 3906, ...
6 A003464 1, 7, 43, 259, 1555, 9331, ...
7 A023000 1, 8, 57, 400, 2801, 19608, ...
8 A023001 1, 9, 73, 585, 4681, 37449, ...
9 A002452 1, 10, 91, 820, 7381, 66430, ...
10 A002275 1, 11, 111, 1111, 11111, ...
11 A016123 1, 12, 133, 1464, 16105, 177156, ...
12 A016125 1, 13, 157, 1885, 22621, 271453, ...

Williams and Seah (1979) factored generalized repunits for 3<=b<=12 and 2<=n<=1000. A (base-10) repunit can be prime only if n is prime, since otherwise 10^(ab)-1 is a binomial number which can be factored algebraically. In fact, if n=2a is even, then 10^(2a)-1=(10^a-1)(10^a+1). As with positive bases, all the exponents of prime repunits with negative bases are also prime.

b OEIS n of prime b-repunits
-12 A057178 5, 11, 109, 193, 1483, ...
-11 A057177 5, 7, 179, 229, 439, 557, 6113, ...
-10 A001562 5, 7, 19, 31, 53, 67, 293, ...
-9 A057175 3, 59, 223, 547, 773, 1009, 1823, ...
-7 A057173 3, 17, 23, 29, 47, 61, 1619, ...
-6 A057172 3, 11, 31, 43, 47, 59, 107, ...
-5 A057171 5, 67, 101, 103, 229, 347, 4013, ...
-3 A007658 3, 5, 7, 13, 23, 43, 281, ...
-2 A000978 3, 5, 7, 11, 13, 17, 19, ...
2 A000043 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, ...
3 A028491 3, 7, 13, 71, 103, 541, 1091, 1367, ...
5 A004061 3, 7, 11, 13, 47, 127, 149, 181, 619, ...
6 A004062 2, 3, 7, 29, 71, 127, 271, 509, 1049, ...
7 A004063 5, 13, 131, 149, 1699, ...
10 A004023 2, 19, 23, 317, 1031, ...
11 A005808 17, 19, 73, 139, 907, 1907, 2029, 4801, ...
12 A004064 2, 3, 5, 19, 97, 109, 317, 353, 701, ...

Yates (1982) published all the repunit factors for n<=1000, a portion of which are reproduced in the Wolfram Language notebook by Weisstein. Brillhart et al. (1988) gave a table of repunit factors which cannot be obtained algebraically, and a continuously updated version of this table is now maintained online. These tables include factors for 10^n-1 (with n odd) and 10^n+1 (with n even and odd). After algebraically factoring R_n, these types of factors are sufficient for complete factorizations.

The sequence of least k such that (n^k-1)/(n-1) is prime for n=1, 2, ... are 2, 3, 2, 3, 2, 5, 3, 0, 2, 17, 2, 5, ... (OEIS A084740), and the sequence of least k such that (n^k+1)/(n+1) is prime for n=1, 2, ... are 3, 3, 3, 5, 3, 3, 0, 3, 5, 5, 5, 3, ... (OEIS A084742).

A Smith number can be constructed from every factored repunit.


REFERENCES:

Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recreations and Essays, 13th ed. New York: Dover, p. 66, 1987.

Baxter, L. "R86453 Is a New Probable Prime Repunit." 26 Oct 2000. https://listserv.nodak.edu/scripts/wa.exe?A2=ind0010&L=nmbrthry&P=2557.

Beiler, A. H. "11111...111." Ch. 11 in Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. New York: Dover, 1966.

Brillhart, J.; Lehmer, D. H.; Selfridge, J.; Wagstaff, S. S. Jr.; and Tuckerman, B. Factorizations of b-n+/-1, b=2, 3, 5, 6, 7, 10, 11, 12 Up to High Powers, rev. ed. Providence, RI: Amer. Math. Soc., 1988.

Di Maria, G. "The Repunit Primes Project." https://www.repunit.org/.

Dubner, H. "Generalized Repunit Primes." Math. Comput. 61, 927-930, 1993.

Dubner, H. "New prp Repunit R(49081)." 9 Sep 1999. https://listserv.nodak.edu/scripts/wa.exe?A2=ind9909&L=nmbrthry&P=740.

Dubner, H. "Repunit R49081 is a Probable Prime." Math. Comput. 71, 833-835, 2002. https://www.ams.org/mcom/2002-71-238/.

Dubner, H. "New Repunit R(109297)." 3 Apr 2007. https://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind0704&L=nmbrthry&T=0&P=178.

Dubner, H. and Granlund, T. "Primes of the Form (b^n+1)/(b+1)." J. Int. Sequences 3, No. 00.2.7, 2000. https://www.cs.uwaterloo.ca/journals/JIS/VOL3/DUBNER/dubner.html.

Dudeney, H. E. The Canterbury Puzzles and Other Curious Problems, 7th ed. London: Thomas Nelson and Sons, 1949.

Gardner, M. The Sixth Book of Mathematical Games from Scientific American. Chicago, IL: University of Chicago Press, pp. 85-86, 1984.

Granlund, T. "Repunits." https://www.swox.com/gmp/repunit.html.

Guy, R. K. "Mersenne Primes. Repunits. Fermat Numbers. Primes of Shape k·2^n+2." §A3 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 8-13, 1994.

Madachy, J. S. Madachy's Mathematical Recreations. New York: Dover, pp. 152-153, 1979.

Ribenboim, P. "Repunits and Similar Numbers." §5.5 in The New Book of Prime Number Records. New York: Springer-Verlag, pp. 350-354, 1996.

Sloane, N. J. A. Sequences A000043/M0672, A000225/M2655, A000978, A001562, A002275, A002477/M5386, A002450/M3914, A002452/M4733, A003462/M3463, A007583, A007658, A003463/M4209, A003464/M4425, A004023/M2114, A004023/M2114, A004061/M2620, A004062/M0861, A004063/M3836, A004064/M0744, A005808/M5032, A016123, A016125, A023000, A023001, A028491/M2643, A046053, A057171, A057172, A057173, A057175, A057177, A057178, A066443, A084740, and A084742 in "The On-Line Encyclopedia of Integer Sequences."

Snyder, W. M. "Factoring Repunits." Am. Math. Monthly 89, 462-466, 1982.

Sorli, R. "Factorization Tables." https://www-staff.maths.uts.edu.au/~rons/fact/fact.htm.

Voznyy, M. and Budnyy, A. "New PRP Repunit R(270343)." 15 Jul 2007. https://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind0707&L=nmbrthry&T=0&P=1086.

Williams, H. C. and Dubner, H. "The Primality of R1031." Math. Comput. 47, 703-711, 1986.

Williams, H. C. and Seah, E. "Some Primes of the Form (a^n-1)/(a-1)Math. Comput. 33, 1337-1342, 1979.

Yates, S. "Peculiar Properties of Repunits." J. Recr. Math. 2, 139-146, 1969.

Yates, S. "Prime Divisors of Repunits." J. Recr. Math. 8, 33-38, 1975.

Yates, S. "The Mystique of Repunits." Math. Mag. 51, 22-28, 1978.

Yates, S. Repunits and Reptends. Delray Beach, FL: S. Yates, 1982.

EN

تصفح الموقع بالشكل العمودي