تاريخ الفيزياء
علماء الفيزياء
الفيزياء الكلاسيكية
الميكانيك
الديناميكا الحرارية
الكهربائية والمغناطيسية
الكهربائية
المغناطيسية
الكهرومغناطيسية
علم البصريات
تاريخ علم البصريات
الضوء
مواضيع عامة في علم البصريات
الصوت
الفيزياء الحديثة
النظرية النسبية
النظرية النسبية الخاصة
النظرية النسبية العامة
مواضيع عامة في النظرية النسبية
ميكانيكا الكم
الفيزياء الذرية
الفيزياء الجزيئية
الفيزياء النووية
مواضيع عامة في الفيزياء النووية
النشاط الاشعاعي
فيزياء الحالة الصلبة
الموصلات
أشباه الموصلات
العوازل
مواضيع عامة في الفيزياء الصلبة
فيزياء الجوامد
الليزر
أنواع الليزر
بعض تطبيقات الليزر
مواضيع عامة في الليزر
علم الفلك
تاريخ وعلماء علم الفلك
الثقوب السوداء
المجموعة الشمسية
الشمس
كوكب عطارد
كوكب الزهرة
كوكب الأرض
كوكب المريخ
كوكب المشتري
كوكب زحل
كوكب أورانوس
كوكب نبتون
كوكب بلوتو
القمر
كواكب ومواضيع اخرى
مواضيع عامة في علم الفلك
النجوم
البلازما
الألكترونيات
خواص المادة
الطاقة البديلة
الطاقة الشمسية
مواضيع عامة في الطاقة البديلة
المد والجزر
فيزياء الجسيمات
الفيزياء والعلوم الأخرى
الفيزياء الكيميائية
الفيزياء الرياضية
الفيزياء الحيوية
الفيزياء العامة
مواضيع عامة في الفيزياء
تجارب فيزيائية
مصطلحات وتعاريف فيزيائية
وحدات القياس الفيزيائية
طرائف الفيزياء
مواضيع اخرى
POLARITY
المؤلف: S. Gibilisco
المصدر: Physics Demystified
الجزء والصفحة: 349
8-10-2020
941
POLARITY
A magnetic field has a direction, or orientation, at any point in space near a current-carrying wire or a permanent magnet. The flux lines run parallel to the direction of the field. A magnetic field is considered to begin, or originate, at a north pole and to end, or terminate, at a south pole. These poles are not the same as the geomagnetic poles; in fact, they are precisely the opposite! The north geomagnetic pole is in reality a south pole because it attracts the north poles of magnetic compasses. Similarly, the south geomagnetic pole is a north pole because it attracts the south poles of compasses. In the case of a permanent magnet, it is usually, but not always, apparent where the magnetic poles are located. With a current-carrying wire, the magnetic field goes around and around endlessly, like a dog chasing its own tail.
A charged electric particle, such as a proton, hovering in space, is an electric monopole, and the electrical flux lines around it aren’t closed. A positive charge does not have to be mated with a negative charge. The electrical flux lines around any stationary charged particle run outward in all directions for a theoretically infinite distance. However, a magnetic field is different. Under normal circumstances, all magnetic flux lines are closed loops. With permanent magnets, there is always a starting point (the north pole) and an ending point (the south pole). Around the current-carrying wire, the loops are circles. This can be seen plainly in experiments with iron filings on paper.