1

المرجع الالكتروني للمعلوماتية

تاريخ الفيزياء

علماء الفيزياء

الفيزياء الكلاسيكية

الميكانيك

الديناميكا الحرارية

الكهربائية والمغناطيسية

الكهربائية

المغناطيسية

الكهرومغناطيسية

علم البصريات

تاريخ علم البصريات

الضوء

مواضيع عامة في علم البصريات

الصوت

الفيزياء الحديثة

النظرية النسبية

النظرية النسبية الخاصة

النظرية النسبية العامة

مواضيع عامة في النظرية النسبية

ميكانيكا الكم

الفيزياء الذرية

الفيزياء الجزيئية

الفيزياء النووية

مواضيع عامة في الفيزياء النووية

النشاط الاشعاعي

فيزياء الحالة الصلبة

الموصلات

أشباه الموصلات

العوازل

مواضيع عامة في الفيزياء الصلبة

فيزياء الجوامد

الليزر

أنواع الليزر

بعض تطبيقات الليزر

مواضيع عامة في الليزر

علم الفلك

تاريخ وعلماء علم الفلك

الثقوب السوداء

المجموعة الشمسية

الشمس

كوكب عطارد

كوكب الزهرة

كوكب الأرض

كوكب المريخ

كوكب المشتري

كوكب زحل

كوكب أورانوس

كوكب نبتون

كوكب بلوتو

القمر

كواكب ومواضيع اخرى

مواضيع عامة في علم الفلك

النجوم

البلازما

الألكترونيات

خواص المادة

الطاقة البديلة

الطاقة الشمسية

مواضيع عامة في الطاقة البديلة

المد والجزر

فيزياء الجسيمات

الفيزياء والعلوم الأخرى

الفيزياء الكيميائية

الفيزياء الرياضية

الفيزياء الحيوية

الفيزياء العامة

مواضيع عامة في الفيزياء

تجارب فيزيائية

مصطلحات وتعاريف فيزيائية

وحدات القياس الفيزيائية

طرائف الفيزياء

مواضيع اخرى

علم الفيزياء : الفيزياء الكلاسيكية : الكهربائية والمغناطيسية : المغناطيسية :

Magnetic field effects

المؤلف:  J. M. D. COEY

المصدر:  Magnetism and Magnetic Materials

الجزء والصفحة:  549

8-3-2021

2014

Magnetic field effects

A magnetic field can influence electrochemical processes in two ways. The first is via the Lorentz force which acts on the current density j in the cell to give a body force density:

FL = j × B. (1)

Whenever a field is applied parallel to the electrode of an electrochemical cell, this force leads to convective stirring of the electrolyte. The transport of ions to the cathode, where they are reduced to metal, is governed by the concentration gradient ∇c, where c is the ionic concentration in moles per cubic metre. The current density j = D∇c, where D is the diffusion constant and ∇c = c0/δ with δ the thickness of the diffusion layer, a region a few hundred micrometres wide near the cathode where the ionic concentration falls from the average concentration c0 in the bath to zero at the cathode surface. The stirring action of the Lorentz force reduces the thickness of the diffusion layer, and it therefore increases the mass-transport-limited current density. For typical plating current densities j = 1 mA mm−2, the Lorentz force in 1 T is 103 N m−3. Corrosion currents, which flow from cathodic to anodic sites some micrometres apart on the surface of a corroding electrode can be similarly influenced by magnetic fields.
The other way magnetic fields can influence the action in electrochemical cells is by means of field gradients. The force on an electrolyte containing a concentration c mol m−3 of ions of susceptibility χmol , which follows  when demagnetizing fields are negligible, as they always are in the solutions used in electrochemistry. The field-gradient force can be much enhanced at ferromagnetic microelectrodes, where significant forces are exerted on paramagnetic ions in solution. Values of ∇B can be as high as 105 T m−1.

EN

تصفح الموقع بالشكل العمودي