تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Band
المؤلف: Brylinski, J
المصدر: Loop Spaces, Characteristic Classes, and Geometric Quantization. Boston, MA: Birkhäuser, 1993.
الجزء والصفحة: ...
6-5-2021
1580
A band over a fixed topological space is represented by a cover , , and for each , a sheaf of groups on along with outer automorphisms satisfying the cocycle conditions and . Here, restrictions of the cover to a finer cover should be viewed as defining the exact same band.
The collection of all bands over the space with respect to a single cover has a natural category structure. Indeed, if and are two bands over with respect to , then an isomorphism consists of outer automorphisms compatible on overlaps so that . The collection of all such bands and isomorphisms thereof forms a category.
The notion of band is essential to the study of gerbes (Moerdijk). In particular, for a gerbe over a topological space , one can choose an open cover of by open subsets , and for each , an object which together form a sheaf of groups on . One can then consider a collection of sheaf isomorphisms between any two groups and which forms a collection of well-defined outer automorphisms.
In some literature, an alternative definition of gerbe is used, thereby resulting in an even more specific definition of band. For example, the associated band of some gerbe is sometimes assumed to be a sheaf of Lie groups (Brylinski 1993), though such assumptions appear to be somewhat rare.
REFERENCES:
Brylinski, J. Loop Spaces, Characteristic Classes, and Geometric Quantization. Boston, MA: Birkhäuser, 1993.
Moerdijk, I. "Introduction to the Language of Stacks and Gerbes." 2002. http://arxiv.org/abs/math/0212266.