تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Chart Tangent Space
المؤلف: المرجع الالكتروني للمعلوماتيه
المصدر: www.almerja.com
الجزء والصفحة: ...
5-7-2021
1129
From the point of view of coordinate charts, the notion of tangent space is quite simple. The tangent space consists of all directions, or velocities, a particle can take. In an open set in there are no constraints, so the tangent space at a point is another copy of . The set could be a coordinate chart for an -dimensional manifold.
The tangent space at , denoted , is the set of possible velocity vectors of paths through . Hence there is a canonical vector basis: if are the coordinates, then are a basis for the tangent space, where is the velocity vector of a particle with unit speed moving inward along the coordinate . The collection of all tangent vectors to every point on the manifold, called the tangent bundle, is the phase space of a single particle moving in the manifold .
It seems as if the tangent space at is the same as the tangent space at all other points in the chart . However, while they do share the same dimension and are isomorphic, in a change of coordinates, they lose their canonical isomorphism.
For example, let and be coordinate charts for the unit interval . We can change coordinates with defined by . This is a change of coordinates because the derivative does not vanish on . But this change is not linear, and stretches out more near 1 than it does near 0. The tangent vectors transform by the derivative. At , they are stretched by a factor of . While at , they are stretched out by a factor of .
In general, the tangent vectors transform according to the Jacobian. The tangent vector at can also be considered as the tangent vector at in another coordinate chart, where is the diffeomorphism from one chart to the other. The linear transformation determined by the Jacobian of is invertible, since is a diffeomorphism.
Not only does the Jacobian, and the chain rule, show that the tangent space is well-defined, independent of coordinate chart, but it also shows that tangent vectors "push forward." That is, given any smooth map between manifolds, it makes sense to map the tangent vectors of to tangent vectors of . Writing as the function between a coordinate chart in and one in , then maps from to . Another notation for is , the differential of . In the language of tensors, the tangent vector's pushing forward means that a vector field is a covariant tensor.