تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Submanifold Tangent Space
المؤلف: المرجع الالكتروني للمعلوماتيه
المصدر: www.almerja.com
الجزء والصفحة: ...
13-7-2021
2139
The tangent plane to a surface at a point is the tangent space at (after translating to the origin). The elements of the tangent space are called tangent vectors, and they are closed under addition and scalar multiplication. In particular, the tangent space is a vector space.
Any submanifold of Euclidean space, and more generally any submanifold of an abstract manifold, has a tangent space at each point. The collection of tangent spaces to forms the tangent bundle . A vector field assigns to every point a tangent vector in the tangent space at .
There are two ways of defining a submanifold, and each way gives rise to a different way of defining the tangent space. The first way uses a parameterization, and the second way uses a system of equations.
Suppose that is a local parameterization of a submanifold in Euclidean space . Say,
(1) |
where is the open unit ball in , and . At the point , the tangent space is the image of the Jacobian of , as a linear transformation from to . For example, consider the unit sphere
(2) |
in . Then the function (with the domain )
(3) |
parameterizes a neighborhood of the north pole. Its Jacobian at is given by the matrix
(4) |
whose image is the tangent space at ,
(5) |
An alternative description of a submanifold as the set of solutions to a system of equations leads to another description of tangent vectors. Consider a submanifold which is the set of solutions to the system of equations
(6) |
|||
(7) |
|||
(8) |
where and the Jacobian of , with , has rank at the solutions to . A tangent vector at a solution is an infinitesimal solution to the above equations (at ). The tangent vector is a solution of the derivative (linearization) of , i.e., it is in the null space of the Jacobian.
Consider this method in the recomputation the tangent space of the sphere at the north pole. The sphere is two-dimensional and is described as the solution to single equation () . Set . We want to compute the tangent space at the solution (at the north pole). The Jacobian at this point is the matrix , and its null space is the tangent space
(9) |
It appears that the tangent space depends either on the choice of parametrization, or on the choice of system of equations. Because the Jacobian of a composition of functions obeys the chain rule, the tangent space is well-defined. Note that the Jacobian of a diffeomorphism is an invertible linear map, and these correspond to the ways the equations can be changed. The basic facts from linear algebra used to show that the tangent space is well-defined are the following.
1. If is invertible, then the image of is the same as the image of .
2. If is invertible, then the null space of is the same as the null space of . More precisely, .
These techniques work in any dimension. In addition, they generalize to submanifolds of an abstract manifold, because tangent vectors depend on local properties. In particular, the tangent space can be computed in any coordinate chart, because any change in coordinate chart corresponds to a diffeomorphism in Euclidean space.
The tangent space can give some geometric insight to higher-dimensional phenomena. For example, to compute the tangent space to the torus (donut) in (which is a flat manifold), note that it can be parametrized, by
(10) |
with domain , near the point . Its Jacobian at is the matrix
(11) |
whose image is the tangent space .
Alternatively, is the set of solutions to equations
(12) |
|||
(13) |
The Jacobian at the solution is the matrix
(14) |
whose null space is the tangent space .