1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : التبلوجيا :

Submanifold Tangent Space

المؤلف:  المرجع الالكتروني للمعلوماتيه

المصدر:  www.almerja.com

الجزء والصفحة:  ...

13-7-2021

2139

Submanifold Tangent Space

The tangent plane to a surface at a point p is the tangent space at p (after translating to the origin). The elements of the tangent space are called tangent vectors, and they are closed under addition and scalar multiplication. In particular, the tangent space is a vector space.

Any submanifold of Euclidean space, and more generally any submanifold of an abstract manifold, has a tangent space at each point. The collection of tangent spaces TM_p to M forms the tangent bundle TM= union _(p in M)(p,TM_p). A vector field assigns to every point p a tangent vector in the tangent space at p.

There are two ways of defining a submanifold, and each way gives rise to a different way of defining the tangent space. The first way uses a parameterization, and the second way uses a system of equations.

Suppose that f=(f_1,...,f_n) is a local parameterization of a submanifold M in Euclidean space R^n. Say,

 f:U->R^n,

(1)

where U is the open unit ball in R^k, and f(U) subset M. At the point p=f(0), the tangent space is the image of the Jacobian of f, as a linear transformation from R^k to R^n. For example, consider the unit sphere

 S^2={(y_1,y_2,y_3):y_1^2+y_2^2+y_3^2=1}

(2)

in R^3. Then the function (with the domain U={(x_1,x_2):x_1^2+x_2^2<1})

 f=(x_1,x_2,sqrt(1-x_1^2-x_2^2))

(3)

parameterizes a neighborhood of the north pole. Its Jacobian at (0,0) is given by the matrix

 [1 0; 0 1; 0 0]

(4)

whose image is the tangent space at p,

 TS^2|_((0,0,1))={(a,b,0)}.

(5)

An alternative description of a submanifold M as the set of solutions to a system of equations leads to another description of tangent vectors. Consider a submanifold M which is the set of solutions to the system of equations

f_1(x_1,...,x_n) = 0

(6)

|

(7)

f_r(x_1,...,x_n) = 0,

(8)

where k+r=n and the Jacobian of f:R^n->R^r, with f=(f_1,...,f_n), has rank r at the solutions M to f=0. A tangent vector v at a solution p is an infinitesimal solution to the above equations (at p). The tangent vector v=(v_1,...,v_n) is a solution of the derivative (linearization) of f, i.e., it is in the null space of the Jacobian.

Consider this method in the recomputation the tangent space of the sphere at the north pole. The sphere is two-dimensional and is described as the solution to single equation (3-2=1x_1^2+x_2^2+x_3^2=1. Set f_1=x_1^2+x_2^2+x_3^2-1. We want to compute the tangent space at the solution f_1(0,0,1)=0 (at the north pole). The Jacobian at this point is the 1×3 matrix [0,0,2], and its null space is the tangent space

 TS^2|_((0,0,1))={(a,b,0)}.

(9)

It appears that the tangent space depends either on the choice of parametrization, or on the choice of system of equations. Because the Jacobian of a composition of functions obeys the chain rule, the tangent space is well-defined. Note that the Jacobian of a diffeomorphism is an invertible linear map, and these correspond to the ways the equations can be changed. The basic facts from linear algebra used to show that the tangent space is well-defined are the following.

1. If A:R^k->R^k is invertible, then the image of B:R^k->R^n is the same as the image of AB.

2. If A:R^n->R^n is invertible, then the null space of B:R^n->R^r is the same as the null space of BA. More precisely, Null(BA)=A^(-1)(Null(B)).

These techniques work in any dimension. In addition, they generalize to submanifolds of an abstract manifold, because tangent vectors depend on local properties. In particular, the tangent space can be computed in any coordinate chart, because any change in coordinate chart corresponds to a diffeomorphism in Euclidean space.

The tangent space can give some geometric insight to higher-dimensional phenomena. For example, to compute the tangent space to the torus (donut) M in R^4 (which is a flat manifold), note that it can be parametrized, by

 f(x_1,x_2)=(sinx_1,cosx_1,sinx_2,cosx_2)

(10)

with domain U={(x_1,x_2):x_1^2+x_2^2<1}, near the point p=f(0,0)=(0,1,0,1). Its Jacobian at p is the matrix

 [1 0; 0 0; 0 1; 0 0],

(11)

whose image is the tangent space TM|_p={(a,0,b,0)}.

Alternatively, M is the set of solutions to equations

f_1(x_1,x_2,x_3,x_4) = x_1^2+x_2^2-1=0

(12)

f_2(x_1,x_2,x_3,x_4) = x_3^2+x_4^2-1=0.

(13)

The Jacobian at the solution p=(0,1,0,1) is the matrix

 [0 2 0 0; 0 0 0 2],

(14)

whose null space is the tangent space TM|_p={(a,0,b,0)}.

EN

تصفح الموقع بالشكل العمودي