1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظريات ومبرهنات :

Axiom of Choice

المؤلف:  Boyer, C. B. and Merzbacher, U. C.

المصدر:  A History of Mathematics, 2nd ed. New York: Wiley, 1991.

الجزء والصفحة:  ...

18-2-2022

1069

Axiom of Choice

An important and fundamental axiom in set theory sometimes called Zermelo's axiom of choice. It was formulated by Zermelo in 1904 and states that, given any set of mutually disjoint nonempty sets, there exists at least one set that contains exactly one element in common with each of the nonempty sets. The axiom of choice is related to the first of Hilbert's problems.

In Zermelo-Fraenkel set theory (in the form omitting the axiom of choice), Zorn's lemma, the trichotomy law, and the well ordering principle are equivalent to the axiom of choice (Mendelson 1997, p. 275). In contexts sensitive to the axiom of choice, the notation "ZF" is often used to denote Zermelo-Fraenkel without the axiom of choice, while "ZFC" is used if the axiom of choice is included.

In 1940, Gödel proved that the axiom of choice is consistent with the axioms of von Neumann-Bernays-Gödel set theory (a conservative extension of Zermelo-Fraenkel set theory). However, in 1963, Cohen (1963) unexpectedly demonstrated that the axiom of choice is also independent of Zermelo-Fraenkel set theory (Mendelson 1997; Boyer and Merzbacher 1991, pp. 610-611).


REFERENCES

Boyer, C. B. and Merzbacher, U. C. A History of Mathematics, 2nd ed. New York: Wiley, 1991.

Carnap, R. Introduction to Symbolic Logic and Its Applications. New York: Dover, pp. 178-179, 1958.

Cohen, P. J. "The Independence of the Continuum Hypothesis." Proc. Nat. Acad. Sci. U. S. A. 50, 1143-1148, 1963.

Cohen, P. J. "The Independence of the Continuum Hypothesis. II." Proc. Nat. Acad. Sci. U. S. A. 51, 105-110, 1964.

Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, pp. 274-276, 1996.

Mendelson, E. Introduction to Mathematical Logic, 4th ed. London: Chapman & Hall, 1997.

Moore, G. H. Zermelo's Axiom of Choice: Its Origin, Development, and Influence. New York: Springer-Verlag, 1982.

EN

تصفح الموقع بالشكل العمودي