1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظريات ومبرهنات :

Zermelo-Fraenkel Axioms

المؤلف:  Abian, A

المصدر:  "On the Independence of Set Theoretical Axioms." Amer. Math. Monthly 76

الجزء والصفحة:  ...

21-2-2022

1268

Zermelo-Fraenkel Axioms

The Zermelo-Fraenkel axioms are the basis for Zermelo-Fraenkel set theory. In the following (Jech 1997, p. 1),  exists  stands for exists,  forall  means for all,  in  stands for "is an element of," emptyset for the empty set, => for implies,  ^  for AND,  v  for OR, and = for "is equivalent to."

1. Axiom of Extensionality: If X and Y have the same elements, then X=Y.

  forall u(u in X=u in Y)=>X=Y.

(1)

2. Axiom of the Unordered Pair: For any a and b there exists a set {a,b} that contains exactly a and b. (also called Axiom of Pairing)

  forall a  forall b  exists c  forall x(x in c=(x=a v x=b)).

(2)

3. Axiom of Subsets: If phi is a property (with parameter p), then for any X and p there exists a set Y={u in X:phi(u,p)} that contains all those u in X that have the property phi. (also called Axiom of Separation or Axiom of Comprehension)

  forall X  forall p  exists Y  forall u(u in Y=(u in X ^ phi(u,p))).

(3)

4. Axiom of the Sum Set: For any X there exists a set Y= union X, the union of all elements of X. (also called Axiom of Union)

  forall X  exists Y  forall u(u in Y= exists z(z in X ^ u in z)).

(4)

5. Axiom of the Power Set: For any X there exists a set Y=P(X), the set of all subsets of X.

  forall X  exists Y  forall u(u in Y=u subset= X).

(5)

6. Axiom of Infinity: There exists an infinite set.

  exists S[emptyset in S ^ ( forall x in S)[x union {x} in S]].

(6)

7. Axiom of Replacement: If F is a function, then for any X there exists a set Y=F[X]={F(x):x in X}.

  forall x  forall y  forall z[phi(x,y,p) ^ phi(x,z,p)=>y=z] 
 => forall X  exists Y  forall y[y in Y=( exists x in X)phi(x,y,p)].

(7)

8. Axiom of Foundation: Every nonempty set has an  in -minimal element. (also called Axiom of Regularity)

  forall S[S!=emptyset=>( exists x in S)S intersection x=emptyset].

(8)

9. Axiom of Choice: Every family of nonempty sets has a choice function.

  forall x in a exists A(x,y)=> exists y forall x in aA(x,y(x)).

(9)

The system of axioms 1-8 is called Zermelo-Fraenkel set theory, denoted "ZF." The system of axioms 1-8 minus the axiom of replacement (i.e., axioms 1-6 plus 8) is called Zermelo set theory, denoted "Z." The set of axioms 1-9 with the axiom of choice is usually denoted "ZFC."

Unfortunately, there seems to be some disagreement in the literature about just what axioms constitute "Zermelo set theory." Mendelson (1997) does not include the axioms of choice or foundation in Zermelo set theory, but does include the axiom of replacement. Enderton (1977) includes the axioms of choice and foundation, but does not include the axiom of replacement. Itô includes an Axiom of the empty set, which can be gotten from (6) and (3), via  exists X(X=X) and emptyset={u:u!=u}.

Abian (1969) proved consistency and independence of four of the Zermelo-Fraenkel axioms.


REFERENCES

Abian, A. "On the Independence of Set Theoretical Axioms." Amer. Math. Monthly 76, 787-790, 1969.

Devlin, K. The Joy of Sets: Fundamentals of Contemporary Set Theory, 2nd ed. New York: Springer-Verlag, 1993.

Enderton, H. B. Elements of Set Theory. New York: Academic Press, 1977.

Itô, K. (Ed.). "Zermelo-Fraenkel Set Theory." §33B in Encyclopedic Dictionary of Mathematics, 2nd ed., Vol. 1. Cambridge, MA: MIT Press, pp. 146-148, 1986.

Iyanaga, S. and Kawada, Y. (Eds.). "Zermelo-Fraenkel Set Theory." §35B in Encyclopedic Dictionary of Mathematics, Vol. 1. Cambridge, MA: MIT Press, pp. 134-135, 1980.

Jech, T. Set Theory, 2nd ed. New York: Springer-Verlag, 1997.Mendelson, E. Introduction to Mathematical Logic, 4th ed. London: Chapman & Hall, 1997.

Zermelo, E. "Über Grenzzahlen und Mengenbereiche." Fund. Math. 16, 29-47, 1930.

EN

تصفح الموقع بالشكل العمودي