1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية البيان :

Dodecahedral Graph

المؤلف:  Ball, W. W. R. and Coxeter, H. S. M

المصدر:  Mathematical Recreations and Essays, 13th ed. New York: Dover, 1987.

الجزء والصفحة:  ...

20-3-2022

2872

Dodecahedral Graph

 

DodecahedralGraphEmbeddings

The dodecahedral graph is the Platonic graph corresponding to the connectivity of the vertices of a dodecahedron, illustrated above in four embeddings. The left embedding shows a stereographic projection of the dodecahedron, the second an orthographic projection, the third is from Read and Wilson (1998, p. 162), and the fourth is derived from LCF notation.

It is the cubic symmetric denoted F_(020)A and is isomorphic to the generalized Petersen graph GP(10,2). It can be described in LCF notation as [10, 7, 4, -4-7, 10, -4, 7, -74]^2.

The dodecahedral graph is implemented in the Wolfram Language as GraphData["DodecahedralGraph"].

It is distance-regular with intersection array {3,2,1,1,1;1,1,1,2,3} and is also distance-transitive.

DodecahedralGraphUnitDistance

It is also a unit-distance graph (Gerbracht 2008), as shown above in a unit-distance embedding.

Finding a Hamiltonian cycle on this graph is known as the icosian game. The dodecahedral graph is not Hamilton-connected and is the only known example of a vertex-transitive Hamiltonian graph (other than cycle graphs C_n) that is not H-*-connected (Stan Wagon, pers. comm., May 20, 2013).

The dodecahedral graph has 20 nodes, 30 edges, vertex connectivity 3, edge connectivity 3, graph diameter 5, graph radius 5, and girth 5. Its has chromatic number 3. Its graph spectrum is Spec(G)=(-sqrt(5))^3(-2)^40^41^5(sqrt(5))^33^1 (Buekenhout and Parker 1998; Cvetkovic et al. 1998, p. 308). Its automorphism group is of order |Aut(G)|=120 (Buekenhout and Parker 1998).

DodecahedralGraphMinimalPlanarIntegralDrawing

The minimal planar integral embedding of the dodecahedral graph has maximum edge length of 2 (Harborth et al. 1987). It is also graceful (Gardner 1983, pp. 158 and 163-164; Gallian 2018, p. 35) with 784298856 fundamentally different labelings, giving a total number of 2×120×784298856=188231725440 graceful labelings (B. Dobbelaere, pers. comm., Oct. 22, 2020).

The dodecahedral graph can be constructed as the graph expansion of 10P_2 with steps 1 and 2, where P_2 is a path graph (Biggs 1993, p. 119).

The skeleton of the great stellated dodecahedron is isomorphic to the dodecahedral graph.

The line graph of the dodecahedral graph is the icosidodecahedral graph.

The dodecahedral graph has chromatic polynomial

 pi(z)=(z-2)(z-1)z(z^(17)-27z^(16)+352z^(15)-2950z^(14)+17839z^(13)-82777z^(12)+305866z^(11)-921448z^(10)+2297495z^9-4783425z^8+8347700z^7-12195590z^6+14808795z^5-14713381z^4+11613602z^3-6892084z^2+2751604z-555984).

DodecahedralGraphMatrices

The plots above show the adjacency, incidence, and graph distance matrices for the dodecahedral graph.

The bipartite double graph of the dodecahedral graph is the cubic symmetric graph F_(040)A.

The following table summarizes properties of the dodecahedral graph.

property value
automorphism group order 120
characteristic polynomial (x-3)(x-1)^5x^4(x+2)^4(x^2-5)^3
chromatic number 3
chromatic polynomial pi(x)
claw-free no
clique number 2
determined by spectrum yes
diameter 5
distance-regular graph yes
dual graph name icosahedral graph
edge chromatic number 3
edge connectivity 3
edge count 30
Eulerian no
generalized Petersen indices (10,2)
girth 5
Hamiltonian yes
Hamiltonian cycle count 60
Hamiltonian path count ?
integral graph no
independence number 8
LCF notation [-10,-4,7,-7,4,-10,7,4,-4,-7]^2
line graph ?
line graph name icosidodecahedral graph
perfect matching graph no
planar yes
polyhedral graph yes
polyhedron embedding names dodecahedron, great stellated dodecahedron
radius 5
regular yes
spectrum (-sqrt(5))^3(-2)^40^41^5(sqrt(5))^33^1
square-free yes
traceable yes
triangle-free yes
vertex connectivity 3
vertex count 20
weakly regular parameters (20,3,0,0,1)

REFERENCES

Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recreations and Essays, 13th ed. New York: Dover, 1987.

Bondy, J. A. and Murty, U. S. R. Graph Theory with Applications. New York: North Holland, p. 234, 1976.

Buekenhout, F. and Parker, M. "The Number of Nets of the Regular Convex Polytopes in Dimension <=4." Disc. Math. 186, 69-94, 1998.

Chartrand, G. Introductory Graph Theory. New York: Dover, 1985.

Cvetković, D. M.; Doob, M.; and Sachs, H. Spectra of Graphs: Theory and Applications, 3rd rev. enl. ed. New York: Wiley, 1998.DistanceRegular.org. "Dodecahedron." http://www.distanceregular.org/graphs/dodecahedron.html.Gardner, M. "Golomb's Graceful Graphs." Ch. 15 in Wheels, Life, and Other Mathematical Amusements. New York: W. H. Freeman, pp. 152-165, 1983.

Gerbracht, E. H.-A. "On the Unit Distance Embeddability of Connected Cubic Symmetric Graphs." Kolloquium über Kombinatorik. Magdeburg, Germany. Nov. 15, 2008.

Harborth, H. and Möller, M. "Minimum Integral Drawings of the Platonic Graphs." Math. Mag. 67, 355-358, 1994.

Harborth, H.; Kemnitz, A.; Möller, M.; and Süssenbach, A. "Ganzzahlige planare Darstellungen der platonischen Körper." Elem. Math. 42, 118-122, 1987.

Read, R. C. and Wilson, R. J. An Atlas of Graphs. Oxford, England: Oxford University Press, p. 266, 1998.

Royle, G. "F020A." http://www.csse.uwa.edu.au/~gordon/foster/F020A.html.Skiena, S. Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, p. 198, 1990.

Wolfram, S. A New Kind of Science. Champaign, IL: Wolfram Media, p. 1032, 2002.

EN

تصفح الموقع بالشكل العمودي