1

المرجع الالكتروني للمعلوماتية

تاريخ الفيزياء

علماء الفيزياء

الفيزياء الكلاسيكية

الميكانيك

الديناميكا الحرارية

الكهربائية والمغناطيسية

الكهربائية

المغناطيسية

الكهرومغناطيسية

علم البصريات

تاريخ علم البصريات

الضوء

مواضيع عامة في علم البصريات

الصوت

الفيزياء الحديثة

النظرية النسبية

النظرية النسبية الخاصة

النظرية النسبية العامة

مواضيع عامة في النظرية النسبية

ميكانيكا الكم

الفيزياء الذرية

الفيزياء الجزيئية

الفيزياء النووية

مواضيع عامة في الفيزياء النووية

النشاط الاشعاعي

فيزياء الحالة الصلبة

الموصلات

أشباه الموصلات

العوازل

مواضيع عامة في الفيزياء الصلبة

فيزياء الجوامد

الليزر

أنواع الليزر

بعض تطبيقات الليزر

مواضيع عامة في الليزر

علم الفلك

تاريخ وعلماء علم الفلك

الثقوب السوداء

المجموعة الشمسية

الشمس

كوكب عطارد

كوكب الزهرة

كوكب الأرض

كوكب المريخ

كوكب المشتري

كوكب زحل

كوكب أورانوس

كوكب نبتون

كوكب بلوتو

القمر

كواكب ومواضيع اخرى

مواضيع عامة في علم الفلك

النجوم

البلازما

الألكترونيات

خواص المادة

الطاقة البديلة

الطاقة الشمسية

مواضيع عامة في الطاقة البديلة

المد والجزر

فيزياء الجسيمات

الفيزياء والعلوم الأخرى

الفيزياء الكيميائية

الفيزياء الرياضية

الفيزياء الحيوية

الفيزياء العامة

مواضيع عامة في الفيزياء

تجارب فيزيائية

مصطلحات وتعاريف فيزيائية

وحدات القياس الفيزيائية

طرائف الفيزياء

مواضيع اخرى

علم الفيزياء : الفيزياء الحديثة : فيزياء الجسيمات :

داخل الذرة

المؤلف:  فرانك كلوس  

المصدر:  فيزياء الجسيمات

الجزء والصفحة:  الفصل الأول (ص11- ص13)

2023-02-16

1163

يبدو الإلكترون جسيمًا أساسيًا غير قابل للتقسيم بحق، ولم يحدث بعد أن اكتشفنا أي بنية أصغر خاصة به. لكن النواة المركزية تتكون من جسيمات أخرى أصغر، هي «البروتونات» و«النيوترونات».

البروتون موجب الشحنة، وهو مصدر الشحنة الموجبة الإجمالية للنواة، وكلما زاد عدد البروتونات الموجودة داخل النواة زادت شحنتها، وبالتبعية زاد عدد الإلكترونات التي يمكنها الدوران حولها، وذلك من أجل تكوين ذرّة تتساوى فيها الشحنتان الموجبة والسالبة، بحيث تصير شحنتها الكلية متعادلة. ولهذا رغم شدة القوى الكهربية العاملة داخل الذرات التي تتكون منها أجسادنا، فإننا لا نعيها تقريبا، وليس للجسم البشري شحنة كهربية. تتكون ذرة أبسط العناصر - الهيدروجين - من بروتون واحد وإلكترون واحد. وعدد البروتونات داخل النواة هو ما يميز أي عنصر عن غيره؛ فتتكون نواة الكربون من ستة بروتونات ونواة الحديد من ستة وعشرين بروتونا، ونواة اليورانيوم من 92 بروتونا.

الشحنات المتباينة تتجاذب بينما الشحنات المتشابهة تتنافر؛ لذا من قبيل العجب أن تتمكن البروتونات - التي تتنافر مع بعضها بفعل هذه الشحنة الكهربية – من البقاء معا في حيز النواة. سبب هذا هو أنه عندما يتلامس بروتونان، فإنه يمسك بعضُهما ببعض بإحكام بفضل ما يُعرف باسم القوة النووية الشديدة (أو التفاعل القوي)، هذه القوة الجاذبة أقوى كثيرًا من التنافر الكهربي، ومن ثُمَّ فهي السبب الذي يجعل أنوية ذراتنا لا تنفجر على نحو تلقائي . ومع ذلك، ليس من الممكن حشد عدد كبير للغاية من البروتونات في مساحة ضيقة؛ ففي النهاية يصير التنافر الكهربي عظيمًا لدرجة لا تحتمل. وهذا أحد الأسباب وراء احتواء نواة أثقل العناصر الموجودة بصورة طبيعية - اليورانيوم - على ٩٢ بروتونا فقط في كل نواة، فإذا حشدت المزيد من البروتونات معا فلن تتمكن النواة من البقاء. وفيما وراء اليورانيوم هناك عناصر أخرى عالية النشاط الإشعاعي، على غرار البلوتونيوم الشهير بعدم استقراره.

 تحتوي أنوية العناصر كلها، خلا الهيدروجين، على نيوترونات إلى جانب البروتونات. والنيوترونات هي نسخة محايدة الشحنة الكهربية من البروتونات؛ إذ إنها تضاهي البروتونات حجمًا، كما أن كتلتها تقترب حتى كسر بسيط من المائة من كتلة البروتونات. تتماسك النيوترونات معا بنفس القوة التي تتماسك بها البروتونات، ولأنها متعادلة الشحنة فإنها لا تعاني من أي خلل كهربي على العكس من البروتونات. نتيجة لذلك، تضيف النيوترونات إلى كتلة النواة، وإلى القوة النووية الشديدة الجاذبة الكلية، وبهذا تساعد في استقرار النواة.

حين تكون النيوترونات في هذه البيئة - كما الحال حين تكون جزءا من ذرة حديد - يمكنها البقاء دون تغير لمليارات الأعوام. لكن بعيدًا عن مثل هذا التجمع المتماسك، يتسم النيوترون المنفرد بعدم الاستقرار فهناك قوة واهنة تسمى القوة النووية الضعيفة (أو التفاعل الضعيف) من تأثيراتها تدمير النيوترون وتحويله إلى بروتون. ويمكن أن يحدث هذا حين يُحشد الكثير من النيوترونات إلى جانب البروتونات داخل النواة. وتأثير هذا التحويل هو تغيير نواة عنصر إلى نواة عنصر آخر. هذا التحويل هو أساس النشاط الإشعاعي والقوة النووية.

إذا عمدت إلى تكبير النيوترون أو البروتون آلاف المرات، فستلحظ أن لهما بنية داخلية غنية. فالبروتون والنيوترون يشبهان سرب النحل، الذي حين يُرَى عن بُعْد يُعتقد أنه بقعة واحدة داكنة، بينما حين يُرَى عن قرب يتبيَّن أنه سحابة تعج بالطاقة. فعند التصوير على طاقة منخفضة سيبدوان أشبه بنقاط بسيطة، لكن عند النظر إليهما بميكروسكوب عالي الدقة، يتضح أنهما يتألفان من عناقيد من جسيمات أصغر تُسمَّى «الكواركات».

لنستعن بتشبيه النقطة الموضوعة في نهاية العبارة مرةً أخيرة. لقد تعين علينا تكبيرها إلى قطر 100 متر حتى نرى الذرة، وإلى قطر كوكب الأرض حتى نرى النواة لكن للكشف عن الكواركات سنحتاج إلى تكبير النقطة حتى المسافة إلى القمر، ثم تكرار ذلك عشرين مرة. باختصار: البنية الأساسية للذرة تتخطى حدود الخيال.

من واقع معرفتنا الحالية، لقد وصلنا أخيرًا إلى الجسيمات الجوهرية للمادة، فالإلكترونات والكواركات تشبه أبجدية الطبيعة؛ أي القطع الأساسية التي منها يتألف كل شيء آخر. وإذا كان هناك وجود لشيء أكثر جوهرية، مثل النقطة والشرطة التي تتألف منها شفرة، مورس فلسنا نعلم على وجه اليقين ماهيته. يرى البعض أننا لو كبرنا الإلكترون أو الكوارك بمقدار مليار مليار مرة، فسنكتشف أن شفرة مورس الكامنة هي أشبه بالأوتار التي تتذبذب في كون به من الأبعاد ما هو أكثر من الأبعاد الثلاثة المكانية والبعد الزمني المألوفة لدينا.

EN

تصفح الموقع بالشكل العمودي