1

المرجع الالكتروني للمعلوماتية

تاريخ الفيزياء

علماء الفيزياء

الفيزياء الكلاسيكية

الميكانيك

الديناميكا الحرارية

الكهربائية والمغناطيسية

الكهربائية

المغناطيسية

الكهرومغناطيسية

علم البصريات

تاريخ علم البصريات

الضوء

مواضيع عامة في علم البصريات

الصوت

الفيزياء الحديثة

النظرية النسبية

النظرية النسبية الخاصة

النظرية النسبية العامة

مواضيع عامة في النظرية النسبية

ميكانيكا الكم

الفيزياء الذرية

الفيزياء الجزيئية

الفيزياء النووية

مواضيع عامة في الفيزياء النووية

النشاط الاشعاعي

فيزياء الحالة الصلبة

الموصلات

أشباه الموصلات

العوازل

مواضيع عامة في الفيزياء الصلبة

فيزياء الجوامد

الليزر

أنواع الليزر

بعض تطبيقات الليزر

مواضيع عامة في الليزر

علم الفلك

تاريخ وعلماء علم الفلك

الثقوب السوداء

المجموعة الشمسية

الشمس

كوكب عطارد

كوكب الزهرة

كوكب الأرض

كوكب المريخ

كوكب المشتري

كوكب زحل

كوكب أورانوس

كوكب نبتون

كوكب بلوتو

القمر

كواكب ومواضيع اخرى

مواضيع عامة في علم الفلك

النجوم

البلازما

الألكترونيات

خواص المادة

الطاقة البديلة

الطاقة الشمسية

مواضيع عامة في الطاقة البديلة

المد والجزر

فيزياء الجسيمات

الفيزياء والعلوم الأخرى

الفيزياء الكيميائية

الفيزياء الرياضية

الفيزياء الحيوية

الفيزياء العامة

مواضيع عامة في الفيزياء

تجارب فيزيائية

مصطلحات وتعاريف فيزيائية

وحدات القياس الفيزيائية

طرائف الفيزياء

مواضيع اخرى

علم الفيزياء : الفيزياء الكلاسيكية : علم البصريات : مواضيع عامة في علم البصريات :

Aberrations

المؤلف:  Richard Feynman, Robert Leighton and Matthew Sands

المصدر:  The Feynman Lectures on Physics

الجزء والصفحة:  Volume I, Chapter 27

2024-03-18

670

Before we get too excited about how marvelous lenses are, we must hasten to add that there are also serious limitations, because of the fact that we have limited ourselves, strictly speaking, to paraxial rays, the rays near the axis. A real lens having a finite size will, in general, exhibit aberrations. For example, a ray that is on the axis, of course, goes through the focus; a ray that is very close to the axis will still come to the focus very well. But as we go farther out, the ray begins to deviate from the focus, perhaps by falling short, and a ray striking near the top edge comes down and misses the focus by quite a wide margin. So, instead of getting a point image, we get a smear. This effect is called spherical aberration, because it is a property of the spherical surfaces we use in place of the right shape. This could be remedied, for any specific object distance, by re-forming the shape of the lens surface, or perhaps by using several lenses arranged so that the aberrations of the individual lenses tend to cancel each other.

Lenses have another fault: light of different colors has different speeds, or different indices of refraction, in the glass, and therefore the focal length of a given lens is different for different colors. So, if we image a white spot, the image will have colors, because when we focus for the red, the blue is out of focus, or vice versa. This property is called chromatic aberration.

There are still other faults. If the object is off the axis, then the focus really isn’t perfect any more, when it gets far enough off the axis. The easiest way to verify this is to focus a lens and then tilt it so that the rays are coming in at a large angle from the axis. Then the image that is formed will usually be quite crude, and there may be no place where it focuses well. There are thus several kinds of errors in lenses that the optical designer tries to remedy by using many lenses to compensate each other’s errors.

How careful do we have to be to eliminate aberrations? Is it possible to make an absolutely perfect optical system? Suppose we had built an optical system that is supposed to bring light exactly to a point. Now, arguing from the point of view of least time, can we find a condition on how perfect the system has to be? The system will have some kind of an entrance opening for the light. If we take the farthest ray from the axis that can come to the focus (if the system is perfect, of course), the times for all rays are exactly equal. But nothing is perfect, so the question is, how wrong can the time be for this ray and not be worth correcting any further? That depends on how perfect we want to make the image. But suppose we want to make the image as perfect as it possibly can be made. Then, of course, our impression is that we have to arrange that every ray takes as nearly the same time as possible. But it turns out that this is not true, that beyond a certain point we are trying to do something that is too fine, because the theory of geometrical optics does not work!

Remember that the principle of least time is not an accurate formulation, unlike the principle of conservation of energy or the principle of conservation of momentum. The principle of least time is only an approximation, and it is interesting to know how much error can be allowed and still not make any apparent difference. The answer is that if we have arranged that between the maximal ray—the worst ray, the ray that is farthest out—and the central ray, the difference in time is less than about the period that corresponds to one oscillation of the light, then there is no use improving it any further. Light is an oscillatory thing with a definite frequency that is related to the wavelength, and if we have arranged that the time difference for different rays is less than about a period, there is no use going any further.

EN

تصفح الموقع بالشكل العمودي