تاريخ الفيزياء
علماء الفيزياء
الفيزياء الكلاسيكية
الميكانيك
الديناميكا الحرارية
الكهربائية والمغناطيسية
الكهربائية
المغناطيسية
الكهرومغناطيسية
علم البصريات
تاريخ علم البصريات
الضوء
مواضيع عامة في علم البصريات
الصوت
الفيزياء الحديثة
النظرية النسبية
النظرية النسبية الخاصة
النظرية النسبية العامة
مواضيع عامة في النظرية النسبية
ميكانيكا الكم
الفيزياء الذرية
الفيزياء الجزيئية
الفيزياء النووية
مواضيع عامة في الفيزياء النووية
النشاط الاشعاعي
فيزياء الحالة الصلبة
الموصلات
أشباه الموصلات
العوازل
مواضيع عامة في الفيزياء الصلبة
فيزياء الجوامد
الليزر
أنواع الليزر
بعض تطبيقات الليزر
مواضيع عامة في الليزر
علم الفلك
تاريخ وعلماء علم الفلك
الثقوب السوداء
المجموعة الشمسية
الشمس
كوكب عطارد
كوكب الزهرة
كوكب الأرض
كوكب المريخ
كوكب المشتري
كوكب زحل
كوكب أورانوس
كوكب نبتون
كوكب بلوتو
القمر
كواكب ومواضيع اخرى
مواضيع عامة في علم الفلك
النجوم
البلازما
الألكترونيات
خواص المادة
الطاقة البديلة
الطاقة الشمسية
مواضيع عامة في الطاقة البديلة
المد والجزر
فيزياء الجسيمات
الفيزياء والعلوم الأخرى
الفيزياء الكيميائية
الفيزياء الرياضية
الفيزياء الحيوية
الفيزياء العامة
مواضيع عامة في الفيزياء
تجارب فيزيائية
مصطلحات وتعاريف فيزيائية
وحدات القياس الفيزيائية
طرائف الفيزياء
مواضيع اخرى
The parabolic antenna
المؤلف: Richard Feynman, Robert Leighton and Matthew Sands
المصدر: The Feynman Lectures on Physics
الجزء والصفحة: Volume I, Chapter 30
2024-03-20
826
Now let us consider another problem in resolving power. This has to do with the antenna of a radio telescope, used for determining the position of radio sources in the sky, i.e., how large they are in angle. Of course, if we use any old antenna and find signals, we would not know from what direction they came. We are very interested to know whether the source is in one place or another. One way we can find out is to lay out a whole series of equally spaced dipole wires on the Australian landscape. Then we take all the wires from these antennas and feed them into the same receiver, in such a way that all the delays in the feed lines are equal. Thus, the receiver receives signals from all of the dipoles in phase. That is, it adds all the waves from every one of the dipoles in the same phase. Now what happens? If the source is directly above the array, at infinity or nearly so, then its radio waves will excite all the antennas in the same phase, so they all feed the receiver together.
Now suppose that the radio source is at a slight angle θ from the vertical. Then the various antennas are receiving signals a little out of phase. The receiver adds all these out-of-phase signals together, and so we get nothing, if the angle θ is too big. How big may the angle be? Answer: we get zero if the angle Δ/L=θ (Fig. 30–3) corresponds to a 360∘ phase shift, that is, if Δ is the wavelength λ. This is because the vector contributions form together a complete polygon with zero resultant. The smallest angle that can be resolved by an antenna array of length L is θ=λ/L. Notice that the receiving pattern of an antenna such as this is exactly the same as the intensity distribution we would get if we turned the receiver around and made it into a transmitter. This is an example of what is called a reciprocity principle. It turns out, in fact, to be generally true for any arrangement of antennas, angles, and so on, that if we first work out what the relative intensities would be in various directions if the receiver were a transmitter instead, then the relative directional sensitivity of a receiver with the same external wiring, the same array of antennas, is the same as the relative intensity of emission would be if it were a transmitter.
Some radio antennas are made in a different way. Instead of having a whole lot of dipoles in a long line, with a lot of feed wires, we may arrange them not in a line but in a curve, and put the receiver at a certain point where it can detect the scattered waves. This curve is cleverly designed so that if the radio waves are coming down from above, and the wires scatter, making a new wave, the wires are so arranged that the scattered waves reach the receiver all at the same time (Fig. 26–12). In other words, the curve is a parabola, and when the source is exactly on its axis, we get a very strong intensity at the focus. In this case we understand very clearly what the resolving power of such an instrument is. The arranging of the antennas on a parabolic curve is not an essential point. It is only a convenient way to get all the signals to the same point with no relative delay and without feed wires. The angle such an instrument can resolve is still θ=λ/L, where L is the separation of the first and last antennas. It does not depend on the spacing of the antennas and they may be very close together or in fact be all one piece of metal. Now we are describing a telescope mirror, of course. We have found the resolving power of a telescope! (Sometimes the resolving power is written θ=1.22 λ/L, where L is the diameter of the telescope. The reason that it is not exactly λ/L is this: when we worked out that θ=λ/L, we assumed that all the lines of dipoles were equal in strength, but when we have a circular telescope, which is the way we usually arrange a telescope, not as much signal comes from the outside edges, because it is not like a square, where we get the same intensity all along a side. We get somewhat less because we are using only part of the telescope there; thus, we can appreciate that the effective diameter is a little shorter than the true diameter, and that is what the 1.22 factor tells us. In any case, it seems a little pedantic to put such precision into the resolving power formula.2)
___________________________________________________________________
Margin
2- This is because Rayleigh’s criterion is a rough idea in the first place. It tells you where it begins to get very hard to tell whether the image was made by one or by two stars. Actually, if sufficiently careful measurements of the exact intensity distribution over the diffracted image spot can be made, the fact that two sources make the spot can be proved even if θ is less than λ/L.