تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
بعض الحلول الاستثنائية والدورية لمعادلة هيل التفاضلية الاعتيادية من الرتبة الثانية
المؤلف: شاكر محمود رشيد
المصدر: كلية علوم الحاسبات والرياضيات في جامعة الموصل
الجزء والصفحة: ...
6-8-2017
551
اسم الباحث: شاكر محمود رشيد
الجامعه والكليه: كلية علوم الحاسبات والرياضيات في جامعة الموصل
الخلاصه :
تناولت دراستنا إيجاد بعض الحلول الاستثنائية والدورية لمعادلة هيل التفاضلية الاعتيادية من الرتبة الثانية ومن الشكل أدناه:
إذ أن
p(t)=p(t+T) ، ] t Î [0,T
والحلول الاستثنائية التي حصلنا عليها في الحالتين المتذبذبة وغير المتذبذبة.
كذلك تم إيجاد بعض الحلول الدورية ونصف الدورية واستقرارها لمعادلة هيل التفاضلية الاعتيادية والتي هي بالصيغة المعلمية التالية
إذ أنÎ ،d معلمان و y(t) دالة دورية تدعى بدالة الانزعاج.
Our thesis studies at finding some exceptional and periodical solutions concerning Hill’s differential equation of the Second order as follows:
where p(t) = p(t + T), tÎ [0,T]
And the exceptional solutions obtained in both oscillatory and non oscillatory states,
The study shows also some periodical and half periodical solutions and their stability concerning Hill’s differential equation which is in parametric form:
whered,ε are parameters, and y(t) is a periodic function which is called
a disturbance function.