Read More
Date: 28-11-2018
390
Date: 27-11-2018
484
Date: 1-11-2018
567
|
If is continuous in a region and satisfies
for all closed contours in , then is analytic in .
Morera's theorem does not require simple connectedness, which can be seen from the following proof. Let be a region, with continuous on , and let its integrals around closed loops be zero. Pick any point , and pick a neighborhood of . Construct an integral of ,
Then one can show that , and hence is analytic and has derivatives of all orders, as does , so is analytic at . This is true for arbitrary , so is analytic in .
It is, in fact, sufficient to require that the integrals of around triangles be zero, but this is a technical point. In this case, the proof is identical except must be constructed by integrating along the line segment instead of along an arbitrary path.
REFERENCES:
Arfken, G. Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 373-374, 1985.
Krantz, S. G. Handbook of Complex Variables. Boston, MA: Birkhäuser, p. 26, 1999.
|
|
بـ3 خطوات بسيطة.. كيف تحقق الجسم المثالي؟
|
|
|
|
|
دماغك يكشف أسرارك..علماء يتنبأون بمفاجآتك قبل أن تشعر بها!
|
|
|
|
|
العتبة العباسية المقدسة تواصل إقامة مجالس العزاء بذكرى شهادة الإمام الكاظم (عليه السلام)
|
|
|