Read More
Date: 11-12-2018
![]()
Date: 27-11-2018
![]()
Date: 18-12-2018
![]() |
A hyperfunction, discovered by Mikio Sato in 1958, is defined as a pair of holomorphic functions which are separated by a boundary
. If
is taken to be a segment on the real-line, then f is defined on the open region
below the boundary and
is defined on the open region
above the boundary. A hyperfunction
defined on gamma is the "jump" across the boundary from
to
.
This pair forms an equivalence class of pairs of holomorphic functions
, where
is a holomorphic function defined on the open region
, comprised of both
and
.
Hyperfunctions can be shown to satisfy
![]() |
![]() |
![]() |
(1) |
![]() |
![]() |
![]() |
(2) |
There is no general product between hyperfunctions, but the product of a hyperfunction by a holomorphic function can be expressed as
![]() |
(3) |
A standard holomorphic function can also be defined as a hyperfunction,
![]() |
(4) |
The Heaviside step function and the delta function
can be defined as the hyperfunctions
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
REFERENCES:
Isao, I. Applied Hyperfunction Theory. Amsterdam, Netherlands: Kluwer, 1992.
Penrose, R. The Road to Reality: A Complete Guide to the Laws of the Universe. New York: Random House, 2006.
|
|
دراسة: حفنة من الجوز يوميا تحميك من سرطان القولون
|
|
|
|
|
تنشيط أول مفاعل ملح منصهر يستعمل الثوريوم في العالم.. سباق "الأرنب والسلحفاة"
|
|
|
|
|
الطلبة المشاركون: مسابقة فنِّ الخطابة تمثل فرصة للتنافس الإبداعي وتنمية المهارات
|
|
|