Read More
Date: 19-9-2018
2729
Date: 28-8-2019
1793
Date: 21-9-2018
1765
|
The jinc function is defined as
(1) |
where is a Bessel function of the first kind, and satisfies . The derivative of the jinc function is given by
(2) |
The function is sometimes normalized by multiplying by a factor of 2 so that (Siegman 1986, p. 729).
The first real inflection point of the function occurs when
(3) |
namely 2.29991033... (OEIS A133920).
The unique real fixed point occurs at 0.48541702373... (OEIS A133921).
REFERENCES:
Bracewell, R. The Fourier Transform and Its Applications, 3rd ed. New York: McGraw-Hill, p. 64, 1999.
Siegman, A. E. Lasers. Sausalito, CA: University Science Books, 1986.
Sloane, N. J. A. Sequences A133920 and A133921 in "The On-Line Encyclopedia of Integer Sequences."
|
|
لصحة القلب والأمعاء.. 8 أطعمة لا غنى عنها
|
|
|
|
|
حل سحري لخلايا البيروفسكايت الشمسية.. يرفع كفاءتها إلى 26%
|
|
|
|
|
جامعة الكفيل تحتفي بذكرى ولادة الإمام محمد الجواد (عليه السلام)
|
|
|