Read More
Date: 26-6-2019
1206
Date: 1-9-2019
1040
Date: 20-6-2019
2939
|
Binet's first formula for , where is a gamma function, is given by
for (Erdélyi et al. 1981, p. 21; Whittaker and Watson 1990, p. 249).
Binet's second formula is
for (Erdélyi et al. 1981, p. 22; Whittaker and Watson 1990, pp. 250-251).
REFERENCES:
Erdélyi, A.; Magnus, W.; Oberhettinger, F.; and Tricomi, F. G. Higher Transcendental Functions, Vol. 1. New York: Krieger, 1981.
Whittaker, E. T. and Watson, G. N. "Binet's First Expansion for in Terms of an Infinite Integral" and "Binet's Second Expression for in Terms of an Infinite Integral." §12.31 and 12.32 in A Course in Modern Analysis, 4th ed. Cambridge, England: Cambridge University Press, pp. 248-251, 1990.
|
|
دراسة تحدد أفضل 4 وجبات صحية.. وأخطرها
|
|
|
|
|
جامعة الكفيل تحتفي بذكرى ولادة الإمام محمد الجواد (عليه السلام)
|
|
|