Read More
Date: 25-5-2019
2344
Date: 22-8-2019
2782
Date: 24-6-2019
1143
|
Let be the least upper bound of the numbers such that is bounded as , where is the Riemann zeta function. Then the Lindelöf hypothesis states that is the simplest function that is zero for and for .
The Lindelöf hypothesis is equivalent to the hypothesis that (Edwards 2001, p. 186).
Backlund (1918-1919) proved that the Lindelöf hypothesis is equivalent to the statement that for every , the number of roots in the rectangle grows less rapidly than as (Edwards 2001, p. 188).
REFERENCES:
Backlund, R. "Über die Beziehung zwischen Anwachsen und Nullstellen der Zeta-Funktion." Ofversigt Finka Vetensk. Soc. 61, No. 9, 1918-1919.
Edwards, H. M. Riemann's Zeta Function. New York: Dover, 2001.
Lindelöf, E. "Quelque remarques sur la croissance de la fonction ." Bull. Sci. Math. 32, 341-356, 1908.
|
|
لصحة القلب والأمعاء.. 8 أطعمة لا غنى عنها
|
|
|
|
|
حل سحري لخلايا البيروفسكايت الشمسية.. يرفع كفاءتها إلى 26%
|
|
|
|
|
جامعة الكفيل تحتفي بذكرى ولادة الإمام محمد الجواد (عليه السلام)
|
|
|