Read More
Date: 25-4-2019
1864
Date: 30-3-2019
1761
Date: 23-5-2019
1522
|
The Euler polynomial is given by the Appell sequence with
(1) |
giving the generating function
(2) |
The first few Euler polynomials are
(3) |
|||
(4) |
|||
(5) |
|||
(6) |
|||
(7) |
|||
(8) |
Roman (1984, p. 100) defines a generalization for which . Euler polynomials are related to the Bernoulli numbers by
(9) |
|||
(10) |
|||
(11) |
where is a binomial coefficient. Setting and normalizing by gives the Euler number
(12) |
The first few values of are , 0, 1/4, , 0, 17/8, 0, 31/2, 0, .... The terms are the same but with the signs reversed if . These values can be computed using the double series
(13) |
The Bernoulli numbers for can be expressed in terms of by
(14) |
The Newton expansion of the Euler polynomials is given by
(15) |
where is a binomial coefficient, is a falling factorial, and is a Stirling number of the second kind (Roman 1984, p. 101).
The Euler polynomials satisfy the identities
(16) |
and
(17) |
for a nonnegative integer.
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). "Bernoulli and Euler Polynomials and the Euler-Maclaurin Formula." §23.1 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 804-806, 1972.
Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Series, and Products, 6th ed. San Diego, CA: Academic Press, 2000.
Prudnikov, A. P.; Marichev, O. I.; and Brychkov, Yu. A. "The Generalized Zeta Function , Bernoulli Polynomials , Euler Polynomials , and Polylogarithms ." §1.2 in Integrals and Series, Vol. 3: More Special Functions. Newark, NJ: Gordon and Breach, pp. 23-24, 1990.
Roman, S. "The Euler Polynomials." §4.2.3 in The Umbral Calculus. New York: Academic Press, pp. 100-106, 1984.
Spanier, J. and Oldham, K. B. "The Euler Polynomials ." Ch. 20 in An Atlas of Functions. Washington, DC: Hemisphere, pp. 175-181, 1987.
|
|
دراسة تحدد أفضل 4 وجبات صحية.. وأخطرها
|
|
|
|
|
العتبة العباسية تحتفي بذكرى ولادة الإمام الجواد (عليه السلام) في مشاتل الكفيل
|
|
|