Algebraic Integer					
				 
				
					
						
						 المؤلف:  
						Ferreirós, J.					
					
						
						 المصدر:  
						"Algebraic Integers." §3.3.2 in Labyrinth of Thought: A History of Set Theory and Its Role in Modern Mathematics. Basel, Switzerland: Birkhäuser					
					
						
						 الجزء والصفحة:  
						...					
					
					
						
						16-10-2019
					
					
						
						2785					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Algebraic Integer
If 
 is a root of the polynomial equation
where the 
s are integers and 
 satisfies no similar equation of degree 
, then 
 is called an algebraic integer of degree 
. An algebraic integer is a special case of an algebraic number (for which the leading coefficient 
 need not equal 1). Radical integers are a subring of the algebraic integers.
A sum or product of algebraic integers is again an algebraic integer. However, Abel's impossibility theorem shows that there are algebraic integers of degree 
 which are not expressible in terms of addition, subtraction, multiplication, division, and root extraction (the elementary operations) on rational numbers. In fact, if elementary operations are allowed on real numbers only, then there are real numbers which are algebraic integers of degree 3 that cannot be so expressed.
The Gaussian integers are algebraic integers of 
, since 
 are roots of
REFERENCES:
Ferreirós, J. "Algebraic Integers." §3.3.2 in Labyrinth of Thought: A History of Set Theory and Its Role in Modern Mathematics. Basel, Switzerland: Birkhäuser, pp. 97-99, 1999.
Hancock, H. Foundations of the Theory of Algebraic Numbers, Vol. 1: Introduction to the General Theory. New York: Macmillan, 1931.
Hancock, H. Foundations of the Theory of Algebraic Numbers, Vol. 2: The General Theory. New York: Macmillan, 1932.
Pohst, M. and Zassenhaus, H. Algorithmic Algebraic Number Theory. Cambridge, England: Cambridge University Press, 1989.
Wagon, S. "Algebraic Numbers." §10.5 in Mathematica in Action. New York: W. H. Freeman, pp. 347-353, 1991.
				
				
					
					
					 الاكثر قراءة في  نظرية الاعداد					
					
				 
				
				
					
					
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة