Cyclotomic Field
المؤلف:
Fröhlich, A. and Taylor, M.
المصدر:
Ch. 6 in Algebraic Number Theory. New York: Cambridge University Press, 1991.
الجزء والصفحة:
...
16-10-2019
985
Cyclotomic Field
A cyclotomic field
is obtained by adjoining a primitive root of unity
, say
, to the rational numbers
. Since
is primitive,
is also an
th root of unity and
contains all of the
th roots of unity,
{sum_(k=0)^(n-1)a_izeta^k:a_i in Q}. " src="http://mathworld.wolfram.com/images/equations/CyclotomicField/NumberedEquation1.gif" style="height:47px; width:158px" /> |
(1)
|
For example, when
and
, the cyclotomic field is a quadratic field
where the coefficients
are contained in
.
The Galois group of a cyclotomic field over the rationals is the multiplicative group of
, the ring of integers (mod
). Hence, a cyclotomic field is a Abelian extension. Not all cyclotomic fields have unique factorization, for instance,
, where
.
REFERENCES:
Fröhlich, A. and Taylor, M. Ch. 6 in Algebraic Number Theory. New York: Cambridge University Press, 1991.
Koch, H. "Cyclotomic Fields." §6.4 in Number Theory: Algebraic Numbers and Functions. Providence, RI: Amer. Math. Soc., pp. 180-184, 2000.
Weiss, E. Algebraic Number Theory. New York: Dover, 1998.
الاكثر قراءة في نظرية الاعداد
اخر الاخبار
اخبار العتبة العباسية المقدسة