المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
An alternative account
2025-01-13
The data
2025-01-13
دراسة تسلسل الDNA sequencing) DNA)
2025-01-13
قواعد في الإدارة / تقديم المنجزات الهامة
2025-01-13
قواعد الاهتمام بالبشر / حسن المعاشرة
2025-01-13
مبادئ رعاية الطفل
2025-01-13

Language history and change
4-3-2022
إبراهيم بن عيسى.
25-12-2016
الزلزال العظيم المدمر من علامات قرب الساعة .
15-12-2015
الفراولة Fragaria vesca L
13-2-2021
Cauchy,s Cosine Integral Formula
18-8-2018
التعذيب
23-9-2016

Dedekind Ring  
  
713   05:08 مساءً   date: 17-10-2019
Author : Atiyah, M. F. and MacDonald, I. G
Book or Source : Ch. 9 in Introduction to Commutative Algebra. Reading,MA: Addison-Wesley, 1969.
Page and Part : ...


Read More
Date: 22-9-2020 783
Date: 6-10-2020 1287
Date: 4-1-2021 985

Dedekind Ring

A Dedekind ring is a commutative ring in which the following hold.

1. It is a Noetherian ring and a integral domain.

2. It is the set of algebraic integers in its field of fractions.

3. Every nonzero prime ideal is also a maximal ideal. Of course, in any ring, maximal ideals are always prime.

The main example of a Dedekind domain is the ring of algebraic integers in a number field, an extension field of the rational numbers. An important consequence of the above axioms is that every ideal can be written uniquely as a product of prime ideals. This compensates for the possible failure of unique factorization of elements into irreducibles.


REFERENCES:

Atiyah, M. F. and MacDonald, I. G. Ch. 9 in Introduction to Commutative Algebra. Reading,MA: Addison-Wesley, 1969.

Cohn, H. Introduction to the Construction of Class Fields. New York: Cambridge University Press, p. 32, 1985.

Fröhlich, A. and Taylor, M. Ch. 2 in Algebraic Number Theory. New York: Cambridge University Press, 1991.

Noether, E. "Abstract Development of Ideal Theory in Algebraic Number Fields and Function Fields." Math. Ann. 96, 26-61, 1927.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.