تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Ruffini,s Rule
المؤلف:
Lipschutz, S
المصدر:
Schaum,s Outline of Linear Algebra. New York: McGraw-Hill
الجزء والصفحة:
...
20-11-2019
1310
Ruffini's Rule
Ruffini's rule a shortcut method for dividing a polynomial by a linear factor of the form which can be used in place of the standard long division algorithm. This method reduces the polynomial and the linear factor into a set of numeric values. After these values are processed, the resulting set of numeric outputs is used to construct the polynomial quotient and the polynomial remainder.
Note that Ruffini's rule is a special case of the more generalized notion of synthetic division in which the divisor polynomial is a monic linear polynomial. Confusingly, Ruffini's rule is sometimes referred to as synthetic division, thus leading to the common misconception that the scope of synthetic division is significantly smaller than that of the long division algorithm.
For an example of Ruffini's rule, consider divided by
. First, if a power of
is missing from the dividend, a term with that power and a zero coefficient must be inserted into the correct position in the polynomial. In this case the
term is missing from the dividend, so
must be added between the cubic and linear terms:
![]() |
(1) |
Next, all the variables and their exponents (,
,
) are removed from the dividend, leaving only a list of the dividend's coefficients:
,
,
, and
. Next, because only the constant term (
) of the linear factor
is necessary for Ruffini's rule, the divisor is modified into a one-term "sequence"
. Note that if the divisor were
, rewriting as
would result in a modified divisor sequence of
instead.
The numbers representing the divisor and the dividend sequences are placed into a division-like configuration:
The first number in the dividend () is put into the first position of the result area (below the horizontal line). This number is the coefficient of the
term in the original dividend polynomial:
Then this first entry in the result () is multiplied by the divisor (
) and the product is placed under the next term in the dividend (
):
Next the number from the dividend and the result of the multiplication are added together and the sum is put in the next position on the result line:
This process is continued for the remainder of the numbers in the dividend:
The result is the sequence ,
,
,
. All numbers except the last become the coefficients of the quotient polynomial. Since a cubic polynomial was divided by a linear term, the quotient is a 2nd degree polynomial:
![]() |
(2) |
The last entry in the result list (namely, ) is the remainder. The quotient and remainder can be combined into one expression:
![]() |
(3) |
(Note that no division operations were performed to compute the answer to this division problem.)
To verify that this process has worked, one can multiply the quotient by the divisor and add the remainder to obtain the original dividend polynomial:
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
Ruffini's rule can be used in conjunction with the polynomial remainder theorem to evaluate a polynomial at a real value. For example, consider the polynomial
![]() |
(6) |
To find the value of , the remainder theorem states that
is the remainder when
is divided by
. Using Ruffini's rule, one obtains:
Therefore .
REFERENCES:
Lipschutz, S. Schaum's Outline of Linear Algebra. New York: McGraw-Hill, pp. 326-327, 2000.
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. "Polynomials and Rational Functions." §5.3 in Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, pp. 173-176, 1992. http://www.library.cornell.edu/nr/bookcpdf/c5-3.pdf.
الاكثر قراءة في نظرية الاعداد
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
