Read More
Date: 21-12-2020
![]()
Date: 15-1-2020
![]()
Date: 1-11-2019
![]() |
Let be a number field, then each fractional ideal
of
belongs to an equivalence class
consisting of all fractional ideals
satisfying
for some nonzero element
of
. The number of equivalence classes of fractional ideals of
is a finite number, known as the class number of
. Multiplication of equivalence classes of fractional ideals is defined in the obvious way, i.e., by letting
. It is easy to show that with this definition, the set of equivalence classes of fractional ideals form an Abelian multiplicative group, known as the class group of
.
REFERENCES:
Marcus, D. A. Number Fields, 3rd ed. New York: Springer-Verlag, 1996.
|
|
دراسة تكشف "مفاجأة" غير سارة تتعلق ببدائل السكر
|
|
|
|
|
أدوات لا تتركها أبدًا في سيارتك خلال الصيف!
|
|
|
|
|
العتبة العباسية المقدسة تؤكد الحاجة لفنّ الخطابة في مواجهة تأثيرات الخطابات الإعلامية المعاصرة
|
|
|