

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي


الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية


الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق


الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات


الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل


المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات


التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات


علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان
Apéry,s Constant
المؤلف:
Le Lionnais
المصدر:
F. Les nombres remarquables. Paris: Hermann
الجزء والصفحة:
...
24-1-2020
1173
Apéry's Constant
Apéry's constant is defined by
![]() |
(1) |
(OEIS A002117) where
is the Riemann zeta function. Apéry (1979) proved that
is irrational, although it is not known if it is transcendental. Sorokin (1994) and Nesterenko (1996) subsequently constructed independent proofs for the irrationality of
(Hata 2000).
arises naturally in a number of physical problems, including in the second- and third-order terms of the electron's gyromagnetic ratio, computed using quantum electrodynamics.
The following table summarizes progress in computing upper bounds on the irrationality measure for
. Here, the exact values for
is given by
![]() |
![]() |
![]() |
(2) |
![]() |
![]() |
![]() |
(3) |
(Hata 2000).
![]() |
upper bound | reference |
| 1 | 5.513891 | Rhin and Viola (2001) |
| 2 | 8.830284 | Hata (1990) |
| 3 | 12.74359 | Dvornicich and Viola (1987) |
| 4 | 13.41782 | Apéry (1979), Sorokin (1994), Nesterenko (1996), Prévost (1996) |
Beukers (1979) reproduced Apéry's rational approximation to
using the triple integral of the form
![]() |
(4) |
where
is a Legendre polynomial. Beukers's integral is given by
![]() |
(5) |
a result that is a special case of what is known as Hadjicostas's formula.
This integral is closely related to
using the curious identity
![]() |
![]() |
(6) |
|
![]() |
![]() |
(7) |
where
is a generalized harmonic number and
is a polygamma function (Hata 2000).
Sums related to
include
![]() |
![]() |
![]() |
(8) |
![]() |
![]() |
![]() |
(9) |
(used by Apéry), the related sum
![]() |
(10) |
as first proved by G. Huvent in 2002 (Gourevitch) and rediscovered by B. Cloitre (pers. comm., Oct. 8, 2004), and
![]() |
![]() |
![]() |
(11) |
![]() |
![]() |
![]() |
(12) |
![]() |
![]() |
![]() |
(13) |
![]() |
![]() |
![]() |
(14) |
![]() |
![]() |
![]() |
(15) |
where
is the Dirichlet lambda function. The above equations are special cases of a general result due to Ramanujan (Berndt 1985).
Apéry's constant is given by an infinite family BBP-type formulas of the form
![]() |
![]() |
![]() |
(16) |
![]() |
![]() |
![]() |
(17) |
![]() |
![]() |
![]() |
(18) |
![]() |
![]() |
![]() |
(19) |
![]() |
![]() |
![]() |
(20) |
![]() |
![]() |
![]() |
(21) |
![]() |
![]() |
![]() |
(22) |
(E. W. Weisstein, Feb. 25, 2006), and the amazing two special sums
![]() |
![]() |
![]() |
(23) |
![]() |
![]() |
![]() |
(24) |
Determining a sum of this type is given as an exercise by Bailey et al. (2007, p. 225; typo corrected).
A beautiful double series for
is given by
![]() |
(25) |
where
is a harmonic number (O. Oloa, pers. comm., Dec. 30, 2005).
Apéry's proof relied on showing that the sum
![]() |
(26) |
where
is a binomial coefficient, satisfies the recurrence relation
![]() |
(27) |
(van der Poorten 1979, Zeilberger 1991). The characteristic polynomial
has roots
, so
![]() |
(28) |
is irrational and
cannot satisfy a two-term recurrence (Jin and Dickinson 2000).
Apéry's constant is also given by
![]() |
(29) |
where
is a Stirling number of the first kind. This can be rewritten as
![]() |
![]() |
![]() |
(30) |
![]() |
![]() |
![]() |
(31) |
where
is the
th harmonic number (Castellanos 1988).
Integrals for
include
![]() |
![]() |
![]() |
(32) |
![]() |
![]() |
![]() |
(33) |
Gosper (1990) gave
![]() |
(34) |
A continued fraction involving Apéry's constant is
![]() |
(35) |
(Apéry 1979, Le Lionnais 1983). Amdeberhan (1996) used Wilf-Zeilberger pairs
with
![]() |
(36) |
to obtain
![]() |
(37) |
For
,
![]() |
(38) |
(Boros and Moll 2004, p. 236; Amdeberhan 1996), and for
,
![]() |
(39) |
(Amdeberhan 1996). The corresponding
for
and 2 are
![]() |
(40) |
and
![]() |
(41) |
is related to the Glaisher-Kinkelin constant
and polygamma function
by
![]() |
(42) |
Gosper (1996) expressed
as the matrix product
![]() |
(43) |
where
![]() |
(44) |
which gives 12 bits per term. The first few terms are
![]() |
![]() |
![]() |
(45) |
![]() |
![]() |
![]() |
(46) |
![]() |
![]() |
![]() |
(47) |
which gives
![]() |
(48) |
Given three integers chosen at random, the probability that no common factor will divide them all is
![]() |
(49) |
B. Haible and T. Papanikolaou computed
to
digits using a Wilf-Zeilberger pair identity with
![]() |
(50) |
, and
, giving the rapidly converging
![]() |
(51) |
(Amdeberhan and Zeilberger 1997). The record as of Dec. 1998 was 128 million digits, computed by S. Wedeniwski.
REFERENCES:
Amdeberhan, T. "Faster and Faster Convergent Series for
." Electronic J. Combinatorics 3, No. 1, R13, 1-2, 1996. http://www.combinatorics.org/Volume_3/Abstracts/v3i1r13.html.
Amdeberhan, T. and Zeilberger, D. "Hypergeometric Series Acceleration via the WZ Method." Electronic J. Combinatorics 4, No. 2, R3, 1-3, 1997. http://www.combinatorics.org/Volume_4/Abstracts/v4i2r3.html. Also available at http://www.math.temple.edu/~zeilberg/mamarim/mamarimhtml/accel.html.
Apéry, R. "Irrationalité de
et
." Astérisque 61, 11-13, 1979.
Bailey, D. H.; Borwein, J. M.; Calkin, N. J.; Girgensohn, R.; Luke, D. R.; and Moll, V. H. Experimental Mathematics in Action. Wellesley, MA: A K Peters, 2007.
Bailey, D. H. and Crandall, R. E. "Random Generators and Normal Numbers." Exper. Math. 11, 527-546, 2002.
Preprint dated Feb. 22, 2003 available at http://www.nersc.gov/~dhbailey/dhbpapers/bcnormal.pdf.
Berndt, B. C. Ramanujan's Notebooks: Part I. New York: Springer-Verlag, 1985.
Beukers, F. "A Note on the Irrationality of
and
." Bull. London Math. Soc. 11, 268-272, 1979.
Beukers, F. "Another Congruence for the Apéry Numbers." J. Number Th. 25, 201-210, 1987.
Boros, G. and Moll, V. Irresistible Integrals: Symbolics, Analysis and Experiments in the Evaluation of Integrals. Cambridge, England: Cambridge University Press, 2004.
Borwein, J. M. and Borwein, P. B. Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity. New York: Wiley, 1987.
Castellanos, D. "The Ubiquitous Pi. Part I." Math. Mag. 61, 67-98, 1988.
Conway, J. H. and Guy, R. K. "The Great Enigma." In The Book of Numbers. New York: Springer-Verlag, pp. 261-262, 1996.
Derbyshire, J. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. New York: Penguin, pp. 76 and 371, 2004.
Dvornicich, R. and Viola, C. "Some Remarks on Beukers' Integrals." In Number Theory, Colloq. Math. Soc. János Bolyai, Vol. 51. Amsterdam, Netherlands: North-Holland, pp. 637-657, 1987.
Ewell, J. A. "A New Series Representation for
." Amer. Math. Monthly 97, 219-220, 1990.
Finch, S. R. "Apéry's Constant." §1.6 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 40-53, 2003.
Gosper, R. W. "Strip Mining in the Abandoned Orefields of Nineteenth Century Mathematics." In Computers in Mathematics (Ed. D. V. Chudnovsky and R. D. Jenks). New York: Dekker, 1990.
Gosper, R. W. "Zeta(3) to
digits." math-fun@cs.arizona.edu posting, Sept. 1, 1996.
Gourevitch, P. "L'univers de
." http://www.pi314.net/hypergse11.php.
Gutnik, L. A. "On the Irrationality of Some Quantities Containing
." Acta Arith. 42, 255-264, 1983. English translation in Amer. Math. Soc. Transl. 140, 45-55, 1988.
Haible, B. and Papanikolaou, T. "Fast Multiprecision Evaluation of Series of Rational Numbers." Technical Report TI-97-7. Darmstadt, Germany: Darmstadt University of Technology, Apr. 1997.
Hata, M. "A New Irrationality Measure for
." Acta Arith. 92, 47-57, 2000.
Havil, J. Gamma: Exploring Euler's Constant. Princeton, NJ: Princeton University Press, p. 42, 2003.
Huvent, G. "Formules d'ordre supérieur." Pi314.net, 2002. http://s146372241.onlinehome.fr/web/pi314.net/hypergse11.php#x13-107002r480.
Huylebrouck, D. "Similarities in Irrationality Proofs for
,
,
, and
." Amer. Math. Monthly 108, 222-231, 2001.
Jin, Y. and Dickinson, H. "Apéry Sequences and Legendre Transforms." J. Austral. Math. Soc. Ser. A 68, 349-356, 2000.
Le Lionnais, F. Les nombres remarquables. Paris: Hermann, p. 36, 1983.
Nesterenko, Yu. V. "A Few Remarks on
." Mat. Zametki 59, 865-880, 1996. English translation in Math. Notes 59, 625-636, 1996.
Plouffe, S. "Table of Current Records for the Computation of Constants." http://pi.lacim.uqam.ca/eng/records_en.html.
Prévost, M. "A New Proof of the Irrationality of
and
using Padé Approximants." J. Comput. Appl. Math. 67, 219-235, 1996.
Rhin, G. and Viola, C. "The Group Structure for
." Acta Arith. 97, 269-293, 2001.
Sloane, N. J. A. Sequence A002117/M0020 in "The On-Line Encyclopedia of Integer Sequences."
Sorokin, V. N. "Hermite-Padé Approximations for Nikishin Systems and the Irrationality of
." Uspekhi Mat. Nauk 49, 167-168, 1994. English translation in Russian Math. Surveys 49, 176-177, 1994.
Srivastava, H. M. "Some Simple Algorithms for the Evaluations and Representations of the Riemann Zeta Function at Positive Integer Arguments." J. Math. Anal. Appl. 246, 331-351, 2000.
van der Poorten, A. "A Proof that Euler Missed... Apéry's Proof of the Irrationality of
." Math. Intel. 1, 196-203, 1979.
Wedeniwski, S. "
Digits of Zeta(3)." http://pi.lacim.uqam.ca/piDATA/Zeta3.txt.
Wells, D. The Penguin Dictionary of Curious and Interesting Numbers. Middlesex, England: Penguin Books, p. 33, 1986.
Zeilberger, D. "The Method of Creative Telescoping." J. Symb. Comput. 11, 195-204, 1991.
الاكثر قراءة في نظرية الاعداد
اخر الاخبار
اخبار العتبة العباسية المقدسة
الآخبار الصحية










































![4/3sum_(k=0)^(infty)(-1)^k[1/((3k+1)^3)-1/((3k+2)^3)+1/((3k+3)^3)]](http://mathworld.wolfram.com/images/equations/AperysConstant/Inline53.gif)


![3/2sum_(k=0)^(infty)(-1)^k[1/((3k+1)^3)-1/((3k+2)^3)-2/((3k+3)^3)]](http://mathworld.wolfram.com/images/equations/AperysConstant/Inline56.gif)


![4/3sum_(k=0)^(infty)(-1)^k[1/((5k+1)^3)-1/((5k+2)^3)+1/((5k+3)^3)-1/((5k+4)^3)+1/((5k+5)^3)]](http://mathworld.wolfram.com/images/equations/AperysConstant/Inline59.gif)


![1/(15)sum_(k=0)^(infty)(-1)^k[(21)/((5k+1)^3)-(21)/((5k+2)^3)+(21)/((5k+3)^3)-(21)/((5k+4)^3)-(104)/((5k+5)^3)]](http://mathworld.wolfram.com/images/equations/AperysConstant/Inline62.gif)


![4/3sum_(k=0)^(infty)(-1)^k[1/((7k+1)^3)-1/((7k+2)^3)+1/((7k+3)^3)-1/((7k+4)^3)+1/((7k+5)^3)-1/((7k+6)^3)+1/((7k+7)^3)]](http://mathworld.wolfram.com/images/equations/AperysConstant/Inline65.gif)


![1/(30)sum_(k=0)^(infty)(-1)^k[(41)/((7k+1)^3)-(41)/((7k+2)^3)+(41)/((7k+3)^3)-(41)/((7k+4)^3)+(41)/((7k+5)^3)-(41)/((7k+6)^3)+(302)/((7k+7)^3)]](http://mathworld.wolfram.com/images/equations/AperysConstant/Inline68.gif)


![1/(672)sum_(k=0)^(infty)1/(4096^k)[(2048)/((24k+1)^3)-(11264)/((24k+2)^3)-(1024)/((24k+3)^3)+(11776)/((24k+4)^3)-(512)/((24k+5)^3)+(4096)/((24k+6)^3)+(256)/((24k+7)^3)+(3456)/((24k+8)^3)+(128)/((24k+9)^3)-(704)/((24k+10)^3)-(64)/((24k+11)^3)-(128)/((24k+12)^3)-(32)/((24k+13)^3)-(176)/((24k+14)^3)+(16)/((24k+15)^3)+(216)/((24k+16)^3)+8/((24k+17)^3)+(64)/((24k+18)^3)-4/((24k+19)^3)+(46)/((24k+20)^3)-2/((24k+21)^3)-(11)/((24k+22)^3)+1/((24k+23)^3)]](http://mathworld.wolfram.com/images/equations/AperysConstant/Inline71.gif)


![9/(224)sum_(k=0)^(infty)1/(4096^k)[(1024)/((24k+2)^3)-(3072)/((24k+3)^3)+(512)/((24k+4)^3)+(1024)/((24k+6)^3)+(1152)/((24k+8)^3)+(384)/((24k+9)^3)+(64)/((24k+10)^3)+(128)/((24k+12)^3)+(16)/((24k+14)^3)+(48)/((24k+15)^3)+(72)/((24k+16)^3)+(16)/((24k+18)^3)+2/((24k+20)^3)-6/((24k+21)^3)+1/((24k+22)^3)].](http://mathworld.wolfram.com/images/equations/AperysConstant/Inline74.gif)
















![8/7[1/4pi^2ln2+2int_0^(pi/2)xln(sinx)dx].](http://mathworld.wolfram.com/images/equations/AperysConstant/Inline96.gif)








![zeta(3)=2/3pi^2[12psi_(-4)(1)-6lnA-ln(2pi)].](http://mathworld.wolfram.com/images/equations/AperysConstant/NumberedEquation18.gif)
![lim_(N->infty)product_(n=1)^NM_n=[0 zeta(3); 0 1],](http://mathworld.wolfram.com/images/equations/AperysConstant/NumberedEquation19.gif)
![M_n=[((n+1)^4)/(4096(n+5/4)^2(n+7/4)^2) (24570n^4+64161n^3+62152n^2+26427n+4154)/(31104(n+1/3)(n+1/2)(n+2/3)); 0 1]](http://mathworld.wolfram.com/images/equations/AperysConstant/NumberedEquation20.gif)


![[1/(19600) (2077)/(1728); 0 1]](http://mathworld.wolfram.com/images/equations/AperysConstant/Inline109.gif)


![[1/(9801) (7561)/(4320); 0 1]](http://mathworld.wolfram.com/images/equations/AperysConstant/Inline112.gif)


![[9/(67600) (50501)/(20160); 0 1],](http://mathworld.wolfram.com/images/equations/AperysConstant/Inline115.gif)

![[zeta(3)]^(-1) approx 1.20206^(-1) approx 0.831907.](http://mathworld.wolfram.com/images/equations/AperysConstant/NumberedEquation22.gif)


قسم الشؤون الفكرية يصدر كتاباً يوثق تاريخ السدانة في العتبة العباسية المقدسة
"المهمة".. إصدار قصصي يوثّق القصص الفائزة في مسابقة فتوى الدفاع المقدسة للقصة القصيرة
(نوافذ).. إصدار أدبي يوثق القصص الفائزة في مسابقة الإمام العسكري (عليه السلام)