تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Catalan,s Constant Digits
المؤلف:
Glaisher, J. W. L.
المصدر:
"On a Numerical Continued Product." Messenger Math. 6
الجزء والصفحة:
...
26-1-2020
872
Catalan's Constant Digits
Based on methods developer in collaboration with M. Leclert, Catalan (1865) computed the constant
![]() |
(OEIS A006752) now known as Catalans' constant to 9 decimals. In 1867, M. Bresse subsequently computed to 24 decimal places using a technique from Kummer. Glaisher evaluated
to 20 (Glaisher 1877) and subsequently 32 decimal digits (Glaisher 1913). Catalan's constant was computed to
decimal digits by A. Roberts on Dec. 13, 2010 (Yee).
The Earls sequence (starting position of copies of the digit
) for Catalan's constant is given for
, 2, ... by 2, 107, 1225, 596, 32187, 185043, 20444527, 92589355, 3487283621, ... (OEIS A224819).
-constant primes occur for 52, 276, 25477, ... (OEIS A118328) digits.
It is not known if is normal, but the following table giving the counts of digits in the first
terms shows that the decimal digits are very uniformly distributed up to at least
.
![]() |
OEIS | 10 | 100 | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
0 | A224615 | 0 | 6 | 98 | 976 | 9828 | 99620 | 999784 | 9998686 | 99996067 |
1 | A224616 | 2 | 18 | 94 | 1039 | 9832 | 99697 | 1000293 | 10003813 | 100006305 |
2 | A224696 | 0 | 10 | 93 | 980 | 10078 | 100168 | 1001789 | 10005122 | 100000806 |
3 | A224706 | 0 | 7 | 104 | 1014 | 9859 | 99580 | 999672 | 9995676 | 100001483 |
4 | A224717 | 1 | 11 | 107 | 961 | 10051 | 100074 | 1000165 | 9995377 | 100001871 |
5 | A224774 | 3 | 10 | 89 | 1003 | 10062 | 100053 | 999965 | 9999309 | 100000777 |
6 | A224775 | 1 | 12 | 78 | 985 | 9986 | 100201 | 998712 | 10000674 | 99998816 |
7 | A224816 | 0 | 11 | 124 | 1032 | 10028 | 100083 | 1000510 | 10003863 | 100000576 |
8 | A224817 | 0 | 3 | 102 | 1058 | 10192 | 100352 | 999298 | 9997437 | 100000863 |
9 | A224818 | 3 | 12 | 111 | 952 | 10084 | 100172 | 999812 | 10000043 | 99992436 |
The digits 0123456789 do not occur in the first decimal digits of
, but 9876543210 does (once), starting at position 2748123761 (E. Weisstein, Aug. 7, 2013).
REFERENCES:
Glaisher, J. W. L. "On a Numerical Continued Product." Messenger Math. 6, 71-76, 1877.
Glaisher, J. W. L. "Numerical Values of the Series for
, 4, 6." Messenger Math. 42, 35-58, 1913.
Sloane, N. J. A. Sequences A118328 and A224819 in "The On-Line Encyclopedia of Integer Sequences."
Yee, A. J. "y-cruncher - A Multi-Threaded Pi-Program." http://www.numberworld.org/y-cruncher/.
الاكثر قراءة في نظرية الاعداد
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
