

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي


الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية


الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق


الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات


الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل


المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات


التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات


علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان
Glaisher-Kinkelin Constant
المؤلف:
Almkvist, G.
المصدر:
"Asymptotic Formulas and Generalized Dedekind Sums." Experim. Math. 7
الجزء والصفحة:
...
16-2-2020
1710
Glaisher-Kinkelin Constant
The Glaisher-Kinkelin constant
is defined by
![]() |
(1) |
(Glaisher 1878, 1894, Voros 1987), where
is the hyperfactorial, as well as
![]() |
(2) |
where
is the Barnes G-function.
It has closed-form representations
![]() |
![]() |
![]() |
(3) |
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
(OEIS A074962) is called the Glaisher-Kinkelin constant and
is the derivative of the Riemann zeta function (Kinkelin 1860; Jeffrey 1862; Glaisher 1877, 1878, 1893, 1894; Voros 1987).
The constant
is implemented as Glaisher, and appears in a number of sums and integrals, especially those involving gamma functions and zeta functions.
Definite integrals include
![]() |
![]() |
![]() |
(6) |
![]() |
![]() |
![]() |
(7) |
(Glaisher 1878; Almqvist 1998; Finch 2003, p. 135), where
is the log gamma function.
Glaisher (1894) showed that
![]() |
![]() |
![]() |
(8) |
![]() |
![]() |
![]() |
(9) |
![]() |
![]() |
![]() |
(10) |
![]() |
![]() |
![]() |
(11) |
(OEIS A115521 and A115522; Glaisher 1894).
It also arises in the identity
![]() |
![]() |
![]() |
(12) |
![]() |
![]() |
![]() |
(13) |
![]() |
![]() |
![]() |
(14) |
![]() |
![]() |
![]() |
(15) |
(OEIS A073002; Glaisher 1894), which follows from the above products.
Guillera and Sondow (2005) give
![]() |
(16) |
Another more spectacular product is
![]() |
![]() |
![]() |
(17) |
![]() |
![]() |
![]() |
(18) |
![]() |
![]() |
![]() |
(19) |
where
is the Dirichlet beta function and
![]() |
![]() |
![]() |
(20) |
![]() |
![]() |
![]() |
(21) |
![]() |
![]() |
![]() |
(22) |
(Glaisher 1894).
It is also given by
![]() |
(23) |
where
![]() |
![]() |
![]() |
(24) |
![]() |
![]() |
![]() |
(25) |
(Glaisher 1878, 1894; who, however, failed to obtain the closed form of this expression).
REFERENCES:
Almkvist, G. "Asymptotic Formulas and Generalized Dedekind Sums." Experim. Math. 7, 343-356, 1998.
Finch, S. R. "Glaisher-Kinkelin Constant." §2.15 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 135-145, 2003.
Glaisher, J. W. L. "On the Product
." Messenger Math. 7, 43-47, 1878.
Glaisher, J. W. L. "On Certain Numerical Products in which the Exponents Depend Upon the Numbers." Messenger Math. 23, 145-175, 1893.
Glaisher, J. W. L. "On the Constant which Occurs in the Formula for
." Messenger Math. 24, 1-16, 1894.
Guillera, J. and Sondow, J. "Double Integrals and Infinite Products for Some Classical Constants Via Analytic Continuations of Lerch's Transcendent." 16 June 2005 http://arxiv.org/abs/math.NT/0506319.
Havil, J. Gamma: Exploring Euler's Constant. Princeton, NJ: Princeton University Press, pp. 88 and 113, 2003.
Jeffrey, H. M. "On the Expansion of Powers of the Trigonometrical Ratios in Terms of Series of Ascending Powers of the Variables." Messenger Math. 5, 91-108, 1862.
Kinkelin. "Über eine mit der Gammafunktion verwandte Transcendente und deren Anwendung auf die Integralrechnung." J. reine angew. Math. 57, 122-158, 1860.
Sloane, N. J. A. Sequences A074962, A087501, A099791, A099792, A115521, and A115522 in "The On-Line Encyclopedia of Integer Sequences."
Voros, A. "Spectral Functions, Special Functions and the Selberg Zeta Function." Commun. Math. Phys. 110, 439-465, 1987.
الاكثر قراءة في نظرية الاعداد
اخر الاخبار
اخبار العتبة العباسية المقدسة
الآخبار الصحية



































![1/6pi^2[12lnA-gamma-ln(2pi)]](http://mathworld.wolfram.com/images/equations/Glaisher-KinkelinConstant/Inline39.gif)
































قسم الشؤون الفكرية يصدر كتاباً يوثق تاريخ السدانة في العتبة العباسية المقدسة
"المهمة".. إصدار قصصي يوثّق القصص الفائزة في مسابقة فتوى الدفاع المقدسة للقصة القصيرة
(نوافذ).. إصدار أدبي يوثق القصص الفائزة في مسابقة الإمام العسكري (عليه السلام)