Read More
Date: 11-8-2020
![]()
Date: 17-10-2019
![]()
Date: 10-5-2020
![]() |
The Lehmer cotangent expansion for which the convergence is slowest occurs when the inequality in the recurrence equation
![]() |
(1) |
for
![]() |
(2) |
is replaced by equality, giving and
![]() |
(3) |
for .
This recurrences gives values of corresponding to 0, 1, 3, 13, 183, 33673, ... (OEIS A002065), and defines the constant known as Lehmer's constant as
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
(OEIS A030125).
is not an algebraic number of degree less than 4, but Lehmer's approach cannot show whether
is transcendental.
REFERENCES:
Finch, S. R. "Lehmer's Constant." §6.6. in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 433-434, 2003.
Le Lionnais, F. Les nombres remarquables. Paris: Hermann, p. 29, 1983.
Lehmer, D. H. "A Cotangent Analogue of Continued Fractions." Duke Math. J. 4, 323-340, 1938.
Rivoal, T. "Propriétés diophantiennes du développement en cotangente continue de Lehmer." http://www-fourier.ujf-grenoble.fr/~rivoal/articles/cotan.pdf.
Sloane, N. J. A. Sequences A002065/M2961 and A030125 in "The On-Line Encyclopedia of Integer Sequences."
|
|
دراسة تكشف "مفاجأة" غير سارة تتعلق ببدائل السكر
|
|
|
|
|
أدوات لا تتركها أبدًا في سيارتك خلال الصيف!
|
|
|
|
|
العتبة العباسية المقدسة تؤكد الحاجة لفنّ الخطابة في مواجهة تأثيرات الخطابات الإعلامية المعاصرة
|
|
|