تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Hanning Function
المؤلف:
Blackman, R. B. and Tukey, J. W.
المصدر:
"Particular Pairs of Windows." §B.5 in The Measurement of Power Spectra, From the Point of View of Communications Engineering. New York: Dover
الجزء والصفحة:
...
18-4-2020
803
Hanning Function
An apodization function, also called the Hann function, frequently used to reduce leakage in discrete Fourier transforms. The illustrations above show the Hanning function, its instrument function, and a blowup of the instrument function sidelobes. It is named after the Austrian meteorologist Julius von Hann (Blackman and Tukey 1959, pp. 98-99). The Hanning function is given by
![]() |
![]() |
![]() |
(1) |
![]() |
![]() |
![]() |
(2) |
Its full width at half maximum is .
It has instrument function
![]() |
![]() |
![]() |
(3) |
![]() |
![]() |
![]() |
(4) |
To investigate the instrument function, define the dimensionless parameter and rewrite the instrument function as
![]() |
(5) |
The half-maximum can then be seen to occur at
![]() |
(6) |
so for , the full width at half maximum is
![]() |
(7) |
To find the extrema, take the derivative
![]() |
(8) |
and equate to zero. The first two roots are and 10.7061..., corresponding to the first sidelobe minimum (
) and maximum (
), respectively.
REFERENCES:
Blackman, R. B. and Tukey, J. W. "Particular Pairs of Windows." §B.5 in The Measurement of Power Spectra, From the Point of View of Communications Engineering. New York: Dover, pp. 14-15 and 95-100, 1959.
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, pp. 554-556, 1992.
الاكثر قراءة في نظرية الاعداد
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
