Read More
Date: 14-7-2020
922
Date: 2-5-2020
709
Date: 8-3-2020
1016
|
Ramanujan developed a number of interesting closed-form expressions for generalized continued fractions. These include the almost integers
(1) |
|||
(2) |
|||
(3) |
(OEIS A091667; Watson 1929, 1931; Hardy 1999, p. 8), where is the golden ratio, its multiplicative inverse
(4) |
|||
(5) |
|||
(6) |
(OEIS A091899; Ramanathan 1984), and
(7) |
|||
(8) |
(OEIS A091668; Watson 1929, 1931; Ramanathan 1984; Berndt and Rankin 1995, p. 57; Hardy 1999, p. 8) and its multiplicative inverse
(9) |
|||
(10) |
(OEIS A091900).
Other examples include the integrals
(11) |
|||
(12) |
|||
(13) |
|||
(14) |
(OEIS A091659; Preece 1931; Perron 1953; Berndt and Rankin 1995, pp. 57 and 65; Hardy 1999, p. 8), where is the Hurwitz zeta function and is the trigamma function, and
(15) |
|||
(16) |
|||
(17) |
(OEIS A091660; Preece 1931; Perron 1953; Berndt and Rankin 1995, pp. 57 and 65), where is a polygamma function.
REFERENCES:
Berndt, B. C. and Rankin, R. A. Ramanujan: Letters and Commentary. Providence, RI: Amer. Math. Soc., 1995.
Hardy, G. H. Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea, 1999.
Perron, O. "Über die Preeceschen Kettenbrüche." Sitz. Bayer. Akad. Wiss. München Math. Phys. Kl., 21-56, 1953.
Preece, C. T. "Theorems Stated by Ramanujan (X)." J. London Math. Soc. 6, 22-32, 1931.
Ramanathan, K. G. "On Ramanujan's Continued Fraction." Acta. Arith. 43, 209-226, 1984.
Sloane, N. J. A. Sequences A091659, A091660, A091667, A091668, A091899, and A091900 in "The On-Line Encyclopedia of Integer Sequences."
Watson, G. N. "Theorems Stated by Ramanujan (VII): Theorems on a Continued Fraction." J. London Math. Soc. 4, 39-48, 1929.
Watson, G. N. "Theorems Stated by Ramanujan (IX): Two Continued Fractions." J. London Math. Soc. 4, 231-237, 1929.
|
|
دراسة تحدد أفضل 4 وجبات صحية.. وأخطرها
|
|
|
|
|
جامعة الكفيل تحتفي بذكرى ولادة الإمام محمد الجواد (عليه السلام)
|
|
|