Read More
Date: 24-7-2020
1322
Date: 24-11-2020
1891
Date: 1-11-2019
783
|
Porter's constant is the constant appearing in formulas for the efficiency of the Euclidean algorithm,
(1) |
|||
(2) |
|||
(3) |
(OEIS A086237), where is the Euler-Mascheroni constant, is the Riemann zeta function, and is the Glaisher-Kinkelin constant (Knuth 1998, p. 357). The notation is generally used for this constant (Knuth 1998, p. 357, Finch 2003, pp. 156-157), though other authors use (Ustinov 2010) or (Dimitrov et al. 2000).
The related constant originally considered by Porter (1975) and Knuth (1976) was denoted and , respectively, and defined by
(4) |
|||
(5) |
Knuth (1976) suggested be called the Lochs-Porter constant due to the work of Lochs (1961).
REFERENCES:
Dimitrov, V. S.; Jullien, G. A.; and Miller, W. C. "Complexity and Fast Algorithms for Multiexponentiations." IEEE Trans. Comput. 49, 141-147, 2000.
Finch, S. R. "Porter-Hensley Constants." §2.18 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 156-160, 2003.
Havil, J. Gamma: Exploring Euler's Constant. Princeton, NJ: Princeton University Press, p. 113, 2003.
Knuth, D. E. "Evaluation of Porter's Constant." Computers Math. Appl. 2, 137-139, 1976.
Knuth, D. E. The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, 3rd ed. Reading, MA: Addison-Wesley, 1998.
Lochs, G. "Statistik der Teilnenner der zu den echten Brüchen gehörigen regelmässigen Kettenbrüche." Monatsh. f. Math. 65, 27-52, 1961.
Porter, J. W. "On a Theorem of Heilbronn." Mathematika 22, 20-28, 1975.
Sloane, N. J. A. Sequence A086237 in "The On-Line Encyclopedia of Integer Sequences."
Ustinov, A. V. "The Mean Number of Steps in the Euclidean Algorithm with Odd Partial Quotients." Math. Notes 88, 574-584, 2010.
|
|
دراسة تحدد أفضل 4 وجبات صحية.. وأخطرها
|
|
|
|
|
جامعة الكفيل تحتفي بذكرى ولادة الإمام محمد الجواد (عليه السلام)
|
|
|