Read More
Date: 27-1-2021
![]()
Date: 22-12-2019
![]()
Date: 19-10-2019
![]() |
An invariant of an elliptic curve given in the form
![]() |
which is closely related to the elliptic discriminant and defined by
![]() |
The determination of as an algebraic integer in the quadratic field
is discussed by Greenhill (1891), Weber (1902), Berwick (1928), Watson (1938), Gross and Zaiger (1985), and Dorman (1988). The norm of
in
is the cube of an integer in
.
REFERENCES:
Berwick, W. E. H. "Modular Invariants Expressible in Terms of Quadratic and Cubic Irrationalities." Proc. London Math. Soc. 28, 53-69, 1928.
Dorman, D. R. "Special Values of the Elliptic Modular Function and Factorization Formulae." J. reine angew. Math. 383, 207-220, 1988.
Greenhill, A. G. "Table of Complex Multiplication Moduli." Proc. London Math. Soc. 21, 403-422, 1891.
Gross, B. H. and Zaiger, D. B. "On Singular Moduli." J. reine angew. Math. 355, 191-220, 1985.
Stepanov, S. A. "The -Invariant." §7.2 in Codes on Algebraic Curves. New York: Kluwer, pp. 178-180, 1999.
Watson, G. N. "Ramanujans Vermutung über Zerfällungsanzahlen." J. reine angew. Math. 179, 97-128, 1938.
Weber, H. Lehrbuch der Algebra, Vols. I-II. New York: Chelsea, 1979.
|
|
دراسة تكشف "مفاجأة" غير سارة تتعلق ببدائل السكر
|
|
|
|
|
أدوات لا تتركها أبدًا في سيارتك خلال الصيف!
|
|
|
|
|
العتبة العباسية المقدسة تؤكد الحاجة لفنّ الخطابة في مواجهة تأثيرات الخطابات الإعلامية المعاصرة
|
|
|