Stöhr Sequence
المؤلف:
Guy, R. K.
المصدر:
Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag
الجزء والصفحة:
...
22-7-2020
944
Stöhr Sequence
Let
and define
to be the least integer greater than
which cannot be written as the sum of at most
addends among the terms
,
, ...,
. This defines the
-Stöhr sequence. The first few of these are given in the following table.
 |
OEIS |
-Stöhr sequence |
| 2 |
A033627 |
1, 2, 4, 7, 10, 13, 16, 19, 22, 25, ... |
| 3 |
A026474 |
1, 2, 4, 8, 15, 22, 29, 36, 43, 50, ... |
| 4 |
A051039 |
1, 2, 4, 8, 16, 31, 46, 61, 76, 91, ... |
| 5 |
A051040 |
1, 2, 4, 8, 16, 32, 63, 94, 125, 156, ... |
REFERENCES:
Guy, R. K. Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, p. 233, 1994.
Mossige, S. "The Postage Stamp Problem: An Algorithm to Determine the
-Range on the
-Range Formula on the Extremal Basis Problem for
." Math. Comput. 69, 325-337, 2000.
Selmer, E. S. "On Stöhr's Recurrent
-Bases for
." Kgl. Norske Vid. Selsk. Skrifter 3, 1-15, 1986.
Selmer, E. S. and Mossige, S. "Stöhr Sequences in the Postage Stamp Problem." Bergen Univ. Dept. Pure Math., No. 32, Dec. 1984.
Sloane, N. J. A. Sequences A026474, A033627, A051039, and A051040 in "The On-Line Encyclopedia of Integer Sequences."
الاكثر قراءة في نظرية الاعداد
اخر الاخبار
اخبار العتبة العباسية المقدسة