Read More
Date: 22-10-2019
893
Date: 18-12-2020
828
Date: 25-10-2020
862
|
Let and define to be the least integer greater than which cannot be written as the sum of at most addends among the terms , , ..., . This defines the -Stöhr sequence. The first few of these are given in the following table.
OEIS | -Stöhr sequence | |
2 | A033627 | 1, 2, 4, 7, 10, 13, 16, 19, 22, 25, ... |
3 | A026474 | 1, 2, 4, 8, 15, 22, 29, 36, 43, 50, ... |
4 | A051039 | 1, 2, 4, 8, 16, 31, 46, 61, 76, 91, ... |
5 | A051040 | 1, 2, 4, 8, 16, 32, 63, 94, 125, 156, ... |
REFERENCES:
Guy, R. K. Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, p. 233, 1994.
Mossige, S. "The Postage Stamp Problem: An Algorithm to Determine the -Range on the -Range Formula on the Extremal Basis Problem for ." Math. Comput. 69, 325-337, 2000.
Selmer, E. S. "On Stöhr's Recurrent -Bases for ." Kgl. Norske Vid. Selsk. Skrifter 3, 1-15, 1986.
Selmer, E. S. and Mossige, S. "Stöhr Sequences in the Postage Stamp Problem." Bergen Univ. Dept. Pure Math., No. 32, Dec. 1984.
Sloane, N. J. A. Sequences A026474, A033627, A051039, and A051040 in "The On-Line Encyclopedia of Integer Sequences."
|
|
دراسة تحدد أفضل 4 وجبات صحية.. وأخطرها
|
|
|
|
|
العتبة العباسية تستعدّ لتكريم عددٍ من الطالبات المرتديات للعباءة الزينبية في جامعات كركوك
|
|
|