Read More
Date: 10-1-2021
![]()
Date: 22-8-2020
![]()
Date: 23-11-2019
![]() |
Let and define
to be the least integer greater than
which cannot be written as the sum of at most
addends among the terms
,
, ...,
. This defines the
-Stöhr sequence. The first few of these are given in the following table.
![]() |
OEIS | ![]() |
2 | A033627 | 1, 2, 4, 7, 10, 13, 16, 19, 22, 25, ... |
3 | A026474 | 1, 2, 4, 8, 15, 22, 29, 36, 43, 50, ... |
4 | A051039 | 1, 2, 4, 8, 16, 31, 46, 61, 76, 91, ... |
5 | A051040 | 1, 2, 4, 8, 16, 32, 63, 94, 125, 156, ... |
REFERENCES:
Guy, R. K. Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, p. 233, 1994.
Mossige, S. "The Postage Stamp Problem: An Algorithm to Determine the -Range on the
-Range Formula on the Extremal Basis Problem for
." Math. Comput. 69, 325-337, 2000.
Selmer, E. S. "On Stöhr's Recurrent -Bases for
." Kgl. Norske Vid. Selsk. Skrifter 3, 1-15, 1986.
Selmer, E. S. and Mossige, S. "Stöhr Sequences in the Postage Stamp Problem." Bergen Univ. Dept. Pure Math., No. 32, Dec. 1984.
Sloane, N. J. A. Sequences A026474, A033627, A051039, and A051040 in "The On-Line Encyclopedia of Integer Sequences."
|
|
دراسة تكشف "مفاجأة" غير سارة تتعلق ببدائل السكر
|
|
|
|
|
أدوات لا تتركها أبدًا في سيارتك خلال الصيف!
|
|
|
|
|
العتبة العباسية المقدسة تؤكد الحاجة لفنّ الخطابة في مواجهة تأثيرات الخطابات الإعلامية المعاصرة
|
|
|