Read More
Date: 3-2-2020
![]()
Date: 14-1-2020
![]()
Date: 13-1-2020
![]() |
The weak law of large numbers (cf. the strong law of large numbers) is a result in probability theory also known as Bernoulli's theorem. Let , ...,
be a sequence of independent and identically distributed random variables, each having a mean
and standard deviation
. Define a new variable
![]() |
(1) |
Then, as , the sample mean
equals the population mean
of each variable.
![]() |
![]() |
![]() |
(2) |
![]() |
![]() |
![]() |
(3) |
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
In addition,
![]() |
![]() |
![]() |
(6) |
![]() |
![]() |
![]() |
(7) |
![]() |
![]() |
![]() |
(8) |
![]() |
![]() |
![]() |
(9) |
Therefore, by the Chebyshev inequality, for all ,
![]() |
(10) |
As , it then follows that
![]() |
(11) |
(Khinchin 1929). Stated another way, the probability that the average for
an arbitrary positive quantity approaches 1 as
(Feller 1968, pp. 228-229).
REFERENCES:
Feller, W. "Laws of Large Numbers." Ch. 10 in An Introduction to Probability Theory and Its Applications, Vol. 1, 3rd ed. New York: Wiley, pp. 228-247, 1968.
Feller, W. "Law of Large Numbers for Identically Distributed Variables." §7.7 in An Introduction to Probability Theory and Its Applications, Vol. 2, 3rd ed. New York: Wiley, pp. 231-234, 1971.
Khinchin, A. "Sur la loi des grands nombres." Comptes rendus de l'Académie des Sciences 189, 477-479, 1929.
Papoulis, A. Probability, Random Variables, and Stochastic Processes, 2nd ed. New York: McGraw-Hill, pp. 69-71, 1984.
|
|
دراسة تكشف "مفاجأة" غير سارة تتعلق ببدائل السكر
|
|
|
|
|
أدوات لا تتركها أبدًا في سيارتك خلال الصيف!
|
|
|
|
|
العتبة العباسية المقدسة تؤكد الحاجة لفنّ الخطابة في مواجهة تأثيرات الخطابات الإعلامية المعاصرة
|
|
|