Read More
Date: 19-9-2020
![]()
Date: 23-1-2020
![]()
Date: 20-2-2020
![]() |
The Dedekind -function is defined by the divisor product
![]() |
(1) |
where the product is over the distinct prime factors of , with the special case
. The first few values are
![]() |
![]() |
![]() |
(2) |
![]() |
![]() |
![]() |
(3) |
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
![]() |
![]() |
![]() |
(7) |
![]() |
![]() |
![]() |
(8) |
![]() |
![]() |
![]() |
(9) |
![]() |
![]() |
![]() |
(10) |
![]() |
![]() |
![]() |
(11) |
giving 1, 3, 4, 6, 6, 12, 8, 12, 12, 18, ... (OEIS A001615).
Sums for include
![]() |
![]() |
![]() |
![]() |
![]() |
(12) |
![]() |
![]() |
![]() |
(13) |
where is the Möbius function.
The Dirichlet generating function is given by
![]() |
![]() |
![]() |
(14) |
![]() |
![]() |
![]() |
(15) |
where is the Riemann zeta function.
REFERENCES:
Cox, D. A. Primes of the Form x2+ny2: Fermat, Class Field Theory and Complex Multiplication. New York: Wiley, p. 228, 1997.
Guy, R. K. Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, p. 96, 1994.
Sloane, N. J. A. Sequence A001615/M2315 in "The On-Line Encyclopedia of Integer Sequences."
|
|
دراسة تكشف "مفاجأة" غير سارة تتعلق ببدائل السكر
|
|
|
|
|
أدوات لا تتركها أبدًا في سيارتك خلال الصيف!
|
|
|
|
|
العتبة العباسية المقدسة تؤكد الحاجة لفنّ الخطابة في مواجهة تأثيرات الخطابات الإعلامية المعاصرة
|
|
|