Read More
Date: 25-12-2019
![]()
Date: 29-1-2020
![]()
Date: 16-10-2019
![]() |
A deeper result than the Hardy-Ramanujan theorem. Let be the number of integers in
such that inequality
![]() |
(1) |
holds, where is the number of distinct prime factors of
. Then
![]() |
![]() |
![]() |
(2) |
![]() |
![]() |
![]() |
(3) |
where is a Landau symbol.
The theorem is discussed in Kac (1959).
REFERENCES:
Kac, M. Statistical Independence in Probability, Analysis and Number Theory. New York: Wiley, 1959.
Riesel, H. "The Erdős-Kac Theorem." Prime Numbers and Computer Methods for Factorization, 2nd ed. Boston, MA: Birkhäuser, pp. 158-159, 1994.
|
|
دراسة تكشف "مفاجأة" غير سارة تتعلق ببدائل السكر
|
|
|
|
|
أدوات لا تتركها أبدًا في سيارتك خلال الصيف!
|
|
|
|
|
العتبة العباسية المقدسة تؤكد الحاجة لفنّ الخطابة في مواجهة تأثيرات الخطابات الإعلامية المعاصرة
|
|
|