Read More
Date: 8-12-2020
![]()
Date: 19-8-2020
![]()
Date: 17-10-2020
![]() |
Let be a positive integer and
the number of (not necessarily distinct) prime factors of
(with
). Let
be the number of positive integers
with an odd number of prime factors, and
the number of positive integers
with an even number of prime factors. Pólya (1919) conjectured that
![]() |
is , where
is the Liouville function.
The conjecture was made in 1919, and disproven by Haselgrove (1958) using a method due to Ingham (1942). Lehman (1960) found the first explicit counterexample, , and the smallest counterexample
was found by Tanaka (1980). The first
for which
are
, 4, 6, 10, 16, 26, 40, 96, 586, 906150256, ... (Tanaka 1980, OEIS A028488). It is unknown if
changes sign infinitely often (Tanaka 1980).
REFERENCES:
Haselgrove, C. B. "A Disproof of a Conjecture of Pólya." Mathematika 5, 141-145, 1958.
Ingham, A. E. "On Two Conjectures in the Theory of Numbers." Amer. J. Math. 64, 313-319, 1942.
Lehman, R. S. "On Liouville's Function." Math. Comput. 14, 311-320, 1960.
Pólya, G. "Verschiedene Bemerkungen zur Zahlentheorie." Jahresber. deutschen Math.-Verein. 28, 31-40, 1919.
Sloane, N. J. A. Sequence A028488 in "The On-Line Encyclopedia of Integer Sequences."
Tanaka, M. "A Numerical Investigation on Cumulative Sum of the Liouville Function" [sic]. Tokyo J. Math. 3, 187-189, 1980.
|
|
دراسة تكشف "مفاجأة" غير سارة تتعلق ببدائل السكر
|
|
|
|
|
أدوات لا تتركها أبدًا في سيارتك خلال الصيف!
|
|
|
|
|
العتبة العباسية المقدسة تؤكد الحاجة لفنّ الخطابة في مواجهة تأثيرات الخطابات الإعلامية المعاصرة
|
|
|