تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Super Catalan Number
المؤلف:
Comtet, L.
المصدر:
dvanced Combinatorics: The Art of Finite and Infinite Expansions, rev. enl. ed. Dordrecht, Netherlands: Reidel
الجزء والصفحة:
...
28-9-2020
923
Super Catalan Number
While the Catalan numbers are the number of p-good paths from to (0,0) which do not cross the diagonal line, the super Catalan numbers count the number of lattice paths with diagonal steps from
to (0,0) which do not touch the diagonal line
.
The super Catalan numbers are given by the recurrence relation
![]() |
(1) |
(Comtet 1974), with . (Note that the expression in Vardi (1991, p. 198) contains two errors.) A closed form expression in terms of Legendre polynomials
for
is
![]() |
![]() |
![]() |
(2) |
![]() |
![]() |
![]() |
(3) |
(Vardi 1991, p. 199). The first few super Catalan numbers are 1, 1, 3, 11, 45, 197, ... (OEIS A001003). These are often called the "little" Schröder numbers. Multiplying by 2 gives the usual ("large") Schröder numbers 2, 6, 22, 90, ... (OEIS A006318).
The first few prime super Catalan numbers have indices 3, 4, 6, 10, 216, ... (OEIS A092839), with no others less than (Weisstein, Mar. 7, 2004), corresponding to the numbers 3, 11, 197, 103049, ... (OEIS A092840).
REFERENCES:
Comtet, L. Advanced Combinatorics: The Art of Finite and Infinite Expansions, rev. enl. ed. Dordrecht, Netherlands: Reidel, p. 56, 1974.
Graham, R. L.; Knuth, D. E.; and Patashnik, O. Exercise 7.50 in Concrete Mathematics: A Foundation for Computer Science, 2nd ed. Reading, MA: Addison-Wesley, 1994.
Motzkin, T. "Relations Between Hypersurface Cross Ratios and a Combinatorial Formula for Partitions of a Polygon for Permanent Preponderance and for Non-Associative Products." Bull. Amer. Math. Soc. 54, 352-360, 1948.
Schröder, E. "Vier combinatorische Probleme." Z. Math. Phys. 15, 361-376, 1870.
Sloane, N. J. A. Sequences A001003/M2898, A092839, and A092840 in "The On-Line Encyclopedia of Integer Sequences."
Vardi, I. Computational Recreations in Mathematica. Reading, MA: Addison-Wesley, pp. 198-199, 1991.
الاكثر قراءة في نظرية الاعداد
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
