المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية

انزيمات المزامرة Isomerases
14-10-2018
السريانية
17-7-2016
دور التوكل على الله في الرزق
19-4-2016
البريد الإلكتروني
17-8-2022
معنى كلمة أن
3-1-2023
حتى الانبياء يفعلون رغبةَ ورهبة
9-11-2014

Payam Number  
  
704   03:34 مساءً   date: 7-10-2020
Author : Sloane, N. J. A
Book or Source : Sequences A083391 and A083556 in "The On-Line Encyclopedia of Integer Sequences."
Page and Part : ...


Read More
Date: 21-12-2020 712
Date: 26-11-2020 966
Date: 11-8-2020 615

Payam Number

Given an integer e>=2, the Payam number E_+/-(e) is the smallest positive odd integer k such that for every positive integer n, the number k·2^n+/-1 is not divisible by any primes p such that the multiplicative order of 2  (mod p) is less than or equal to e. Payam numbers are good candidates for searching for Proth primes, i.e., primes of the form k·2^n+1, as well as primes of the form k·2^n-1.

The first few values of E_+(n) for n=2, 3, ... are 3, 9, 15, 105, 105, 105, 105, 105, 165, 165, 75075, ... (OEIS A083556), and the first few values of E_-(n) are 3, 3, 45, 45, 45, 45, 45, 45, 45, 2145, ... (OEIS A083391).


REFERENCES:

Sloane, N. J. A. Sequences A083391 and A083556 in "The On-Line Encyclopedia of Integer Sequences."

Smith, R. "A Co-Ordinated Search for Primes in the Payam Number Series." https://home.btclick.com/rwsmith/pp/payam3.htm.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.