Read More
Date: 12-2-2021
1248
Date: 4-3-2021
2158
Date: 4-3-2021
1798
|
POLARITY
A magnetic field has a direction, or orientation, at any point in space near a current-carrying wire or a permanent magnet. The flux lines run parallel to the direction of the field. A magnetic field is considered to begin, or originate, at a north pole and to end, or terminate, at a south pole. These poles are not the same as the geomagnetic poles; in fact, they are precisely the opposite! The north geomagnetic pole is in reality a south pole because it attracts the north poles of magnetic compasses. Similarly, the south geomagnetic pole is a north pole because it attracts the south poles of compasses. In the case of a permanent magnet, it is usually, but not always, apparent where the magnetic poles are located. With a current-carrying wire, the magnetic field goes around and around endlessly, like a dog chasing its own tail.
A charged electric particle, such as a proton, hovering in space, is an electric monopole, and the electrical flux lines around it aren’t closed. A positive charge does not have to be mated with a negative charge. The electrical flux lines around any stationary charged particle run outward in all directions for a theoretically infinite distance. However, a magnetic field is different. Under normal circumstances, all magnetic flux lines are closed loops. With permanent magnets, there is always a starting point (the north pole) and an ending point (the south pole). Around the current-carrying wire, the loops are circles. This can be seen plainly in experiments with iron filings on paper.
|
|
دراسة تحدد أفضل 4 وجبات صحية.. وأخطرها
|
|
|
|
|
العتبة العباسية تستعدّ لتكريم عددٍ من الطالبات المرتديات للعباءة الزينبية في جامعات كركوك
|
|
|