Read More
Date: 1-8-2020
![]()
Date: 8-11-2020
![]()
Date: 14-1-2020
![]() |
Like the entire harmonic series, the harmonic series
![]() |
(1) |
taken over all primes also diverges, as first shown by Euler in 1737 (Nagell 1951, p. 59; Hardy and Wright 1979, pp. 17 and 22; Wells 1986, p. 41; Havil 2003, pp. 28-31), although it does so very slowly. The sum exceeds 1, 2, 3, ... after 3, 59, 361139, ... (OEIS A046024) primes.
Its asymptotic behavior is given by
![]() |
(2) |
where
![]() |
(3) |
(OEIS A077761) is the Mertens constant (Hardy and Wright 1979, p. 351; Hardy 1999, p. 50; Havil 2003, p. 64).
REFERENCES:
Hardy, G. H. Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea, 1999.
Hardy, G. H. and Wright, E. M. "Prime Numbers" and "The Sequence of Primes." §1.2 and 1.4 in An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, pp. 1-4, 17, 22, and 251, 1979.
Havil, J. "Harmonic Series of Primes." §3.2 in Gamma: Exploring Euler's Constant. Princeton, NJ: Princeton University Press, pp. 28-31, 2003.
Nagell, T. Introduction to Number Theory. New York: Wiley, 1951.
Sloane, N. J. A. Sequences A046024 and A077761 in "The On-Line Encyclopedia of Integer Sequences."
Wells, D. The Penguin Dictionary of Curious and Interesting Numbers. Middlesex, England: Penguin Books, p. 41, 1986.
|
|
دراسة تكشف "مفاجأة" غير سارة تتعلق ببدائل السكر
|
|
|
|
|
أدوات لا تتركها أبدًا في سيارتك خلال الصيف!
|
|
|
|
|
العتبة العباسية المقدسة تؤكد الحاجة لفنّ الخطابة في مواجهة تأثيرات الخطابات الإعلامية المعاصرة
|
|
|