Read More
Date: 15-9-2020
![]()
Date: 19-3-2020
![]()
Date: 1-10-2020
![]() |
For any algebraic number of degree
, a rational approximation
to
must satisfy
![]() |
for sufficiently large . Writing
leads to the definition of the irrationality measure of a given number. Apostol (1997) states the theorem in the slightly modified but equivalent form that there exists a positive constant
depending only on
such that for all integers
and
with
,
![]() |
REFERENCES:
Apostol, T. M. "Liouville's Approximation Theorem." §7.3 in Modular Functions and Dirichlet Series in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 146-148, 1997.
Courant, R. and Robbins, H. "Liouville's Theorem and the Construction of Transcendental Numbers." §2.6.2 in What Is Mathematics?: An Elementary Approach to Ideas and Methods, 2nd ed. Oxford, England: Oxford University Press, pp. 104-107, 1996.
|
|
دراسة تكشف "مفاجأة" غير سارة تتعلق ببدائل السكر
|
|
|
|
|
أدوات لا تتركها أبدًا في سيارتك خلال الصيف!
|
|
|
|
|
العتبة العباسية المقدسة تؤكد الحاجة لفنّ الخطابة في مواجهة تأثيرات الخطابات الإعلامية المعاصرة
|
|
|