Read More
Date: 8-10-2020
809
Date: 16-1-2020
667
Date: 10-10-2020
771
|
The Legendre transform of a sequence is the sequence with terms given by
(1) |
|||
(2) |
where is a binomial coefficient (Jin and Dickinson 2000, Zudilin 2004). The inverse Legendre transform is then given by
(3) |
where
(4) |
|||
(5) |
(Zudilin 2004).
Strehl (1994) and Schmidt (1995) showed that
(6) |
REFERENCES:
Jin, Y. and Dickinson, H. "Apéry Sequences and Legendre Transforms." J. Austral. Math. Soc. Ser. A 68, 349-356, 2000.
Schmidt, A. L. "Legendre Transforms and Apéry's Sequences." J. Austral. Math. Soc. Ser. A 58, 358-375, 1995.
Strehl, V. "Binomial Identities--Combinatorial and Algorithmic Aspects. Trends in Discrete Mathematics." Disc. Math. 136, 309-346, 1994.
Zudilin, W. "On a Combinatorial Problem of Asmus Schmidt." Elec. J. Combin. 11, R22, 1-8, 2004. https://www.combinatorics.org/Volume_11/Abstracts/v11i1r22.html.
|
|
دراسة تحدد أفضل 4 وجبات صحية.. وأخطرها
|
|
|
|
|
قسم الشؤون الفكرية يصدر كتاب الفلسفة الغربية برؤية الشيخ مرتضى مطهري
|
|
|