المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
Bronchiectasis
2025-01-13
ما ورد في شأن موسى (عليه السّلام) / القسم الأول
2025-01-13
مواعيد زراعة الفول الرومي
2025-01-13
طرق تكاثر وزراعة الفول الرومي
2025-01-13
Mediators of Inflammation and the Interferons
2025-01-13
Formation of Bone
2025-01-13

لماذا لا تحترق الشمس تماماً؟
21-5-2021
سل الماشية
3-5-2016
النطاق الموضوعي المقترح للوساطة الجنائية
2023-09-20
ثورة سنة 1688 في انجلترا
2024-11-15
الشكل الظاهري للحشرات
17-2-2016
المضافات الطبيعية Natural Additives
22-4-2019

Longest Increasing Subsequence  
  
871   02:56 صباحاً   date: 1-11-2020
Author : Pemmaraju, S. and Skiena, S.
Book or Source : "Longest Increasing Subsequences." §4.4.6 in Computational Discrete Mathematics: Combinatorics and Graph Theory in Mathematica. Cambridge, England:...
Page and Part : ...


Read More
Date: 19-1-2020 1011
Date: 9-8-2020 652
Date: 31-8-2020 1096

Longest Increasing Subsequence

The longest increasing (contiguous) subsequence of a given sequence is the subsequence of increasing terms containing the largest number of elements. For example, the longest increasing subsequence of the permutation {6,3,4,8,10,5,7,1,9,2} is {3,4,8,10}.

It can be coded in the Wolfram Language as follows.

  <<Combintorica`
  LongestContinguousIncreasingSubsequence[p_] :=
    Last[
    Split[Sort[Runs[p]], Length[#1] >= Length[#2]&]
    ]

REFERENCES:

Pemmaraju, S. and Skiena, S. "Longest Increasing Subsequences." §4.4.6 in Computational Discrete Mathematics: Combinatorics and Graph Theory in Mathematica. Cambridge, England: Cambridge University Press, pp. 170-172, 2003.

Skiena, S. "Longest Increasing Subsequences." §2.3.6 in Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, pp. 73-75, 1990.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.