المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
الاسطرلاب
2025-01-12
ظهور التلسكوبات
2025-01-12
آثار فسخ عقد الزواج بعد الدخول بالنسبة للنفقة في قانون الاحوال الشخصية الكويتي
2025-01-12
نضج وحصاد وتخزين البسلة
2025-01-12
مقبرة (شيشنق الثالث)
2025-01-12
الفرعون شيشنق الرابع وآثاره
2025-01-12

فيروس التبقع الحلقي الاسود في الكرنب
26-6-2018
كسب حق التصرف بسبب الوفاة
8-8-2017
من مكروهات القراءة
3-10-2016
عبد اللّه بن كثير
26-04-2015
حكم من توضأ ثم قطعت يده
29-12-2015
الحسن بن السّري
5-9-2016

e-Perfect Number  
  
817   05:45 مساءً   date: 23-11-2020
Author : Guy, R. K.
Book or Source : "Exponential-Perfect Numbers." §B17 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag
Page and Part : ...


Read More
Date: 24-12-2019 1235
Date: 8-2-2020 660
Date: 11-8-2020 578

e-Perfect Number

A number n is called an e-perfect number if sigma_e(n)=2n, where sigma_e(n) is the sum of the e-Divisors of n. If m is squarefree, then sigma_e(m)=m. As a result, if n is e-perfect and m is squarefree with m_|_n, then mn is e-perfect.

The first few e-perfect numbers are 36, 180, 252, 396, 468, ... (OEIS A054979). There are no odd e-perfect numbers. The first few primitive e-perfect numbers are 36, 1800, 2700, 17424, ... (OEIS A054980).


REFERENCES:

Guy, R. K. "Exponential-Perfect Numbers." §B17 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, p. 73, 1994.

Sloane, N. J. A. Sequences A054979 and A054980 in "The On-Line Encyclopedia of Integer Sequences."

Subbarao, M. V. and Suryanarayan, D. "Exponential Perfect and Unitary Perfect Numbers." Not. Amer. Math. Soc. 18, 798, 1971.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.