 
					
					
						Sierpiński Number of the First Kind					
				 
				
					
						 المؤلف:  
						Ribenboim, P.
						 المؤلف:  
						Ribenboim, P.					
					
						 المصدر:  
						The New Book of Prime Number Records. New York: Springer-Verlag
						 المصدر:  
						The New Book of Prime Number Records. New York: Springer-Verlag					
					
						 الجزء والصفحة:  
						...
						 الجزء والصفحة:  
						...					
					
					
						 15-12-2020
						15-12-2020
					
					
						 1340
						1340					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Sierpiński Number of the First Kind
A Sierpiński number of the first kind is a number of the form  . The first few are 2, 5, 28, 257, 3126, 46657, 823544, 16777217, ... (OEIS A014566). Sierpiński proved that if
. The first few are 2, 5, 28, 257, 3126, 46657, 823544, 16777217, ... (OEIS A014566). Sierpiński proved that if  is prime with
 is prime with  , then
, then  must be of the form
 must be of the form  , making
, making  a Fermat number
 a Fermat number  with
 with  . The first few
. The first few  of this form are 1, 3, 6, 11, 20, 37, 70, ... (OEIS A006127).
 of this form are 1, 3, 6, 11, 20, 37, 70, ... (OEIS A006127).
The numbers of digits in the number  is given by
 is given by
where ![[z]](https://mathworld.wolfram.com/images/equations/SierpinskiNumberoftheFirstKind/Inline11.gif) is the ceiling function, so the numbers of digits in the first few candidates are 1, 3, 20, 617, 315653, 41373247568, ... (OEIS A089943).
 is the ceiling function, so the numbers of digits in the first few candidates are 1, 3, 20, 617, 315653, 41373247568, ... (OEIS A089943).
The only known prime Sierpiński numbers of the first kind are 2, 5, 257, with the first unknown case being  . The status of Sierpiński numbers is summarized in the table below (Nielsen).
. The status of Sierpiński numbers is summarized in the table below (Nielsen).
	
		
			|  |  | status of  | 
		
			| 0 | 1 | prime (  ) | 
		
			| 1 | 3 | prime (  ) | 
		
			| 2 | 6 | composite with factor  | 
		
			| 3 | 11 | composite with factor  | 
		
			| 4 | 20 | composite with no factor known | 
		
			| 5 | 37 | composite with factor  | 
		
			| 6 | 70 | unknown | 
		
			| 7 | 135 | unknown | 
		
			| 8 | 264 | unknown | 
		
			| 9 | 521 | unknown | 
		
			| 10 | 1034 | unknown | 
		
			| 11 | 2059 | composite with factor  | 
		
			| 12 | 4108 | unknown | 
		
			| 13 | 8205 | unknown | 
		
			| 14 | 16398 | unknown | 
		
			| 15 | 32783 | unknown | 
		
			| 16 | 65552 | unknown | 
		
			| 17 | 131089 | unknown | 
	
REFERENCES:
Keller, W. "Factors of Fermat Numbers and Large Primes of the Form  ." Math. Comput. 41, 661-673, 1983.
." Math. Comput. 41, 661-673, 1983.
Keller, W. "Factors of Fermat Numbers and Large Primes of the Form  , II." In prep.
, II." In prep.
Keller, W. "Prime Factors  of Fermat Numbers
 of Fermat Numbers  and Complete Factoring Status." https://www.prothsearch.net/fermat.html.
 and Complete Factoring Status." https://www.prothsearch.net/fermat.html.
Madachy, J. S. Madachy's Mathematical Recreations. New York: Dover, p. 155, 1979.
Nielsen, J. S. " ." https://jeppesn.dk/nton.html.
." https://jeppesn.dk/nton.html.
Ribenboim, P. The New Book of Prime Number Records. New York: Springer-Verlag, p. 74, 1989.
Sloane, N. J. A. Sequences A006127/M2547, A014566, A089943 in "The On-Line Encyclopedia of Integer Sequences."
				
				
					
					 الاكثر قراءة في  نظرية الاعداد
					 الاكثر قراءة في  نظرية الاعداد					
					
				 
				
				
					
					 اخر الاخبار
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة