تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Square Pyramidal Number
المؤلف:
Anglin, W. S.
المصدر:
"The Square Pyramid Puzzle." Amer. Math. Monthly 97
الجزء والصفحة:
...
24-12-2020
2563
Square Pyramidal Number
A figurate number of the form
![]() |
(1) |
corresponding to a configuration of points which form a square pyramid, is called a square pyramidal number (or sometimes, simply a pyramidal number). The first few are 1, 5, 14, 30, 55, 91, 140, 204, ... (OEIS A000330). The generating function for square pyramidal numbers is
![]() |
(2) |
The square pyramidal numbers are sums of consecutive pairs of tetrahedral numbers and satisfy
![]() |
(3) |
where is the
th triangular number.
The only numbers which are simultaneously square and square pyramidal
(the cannonball problem) are
and
, corresponding to
and
(Ball and Coxeter 1987, p. 59; Ogilvy 1988; Dickson 2005, p. 25), as conjectured by Lucas (1875), partially proved by Moret-Blanc (1876) and Lucas (1877), and proved by Watson (1918). The problem requires solving the Diophantine equation
![]() |
(4) |
(Guy 1994, p. 147). Watson (1918) gave an almost elementary proof, disposing of most cases by elementary means, but resorting to the use of elliptic functions for one pesky case. Entirely elementary proofs have been given by Ma (1985) and Anglin (1990).
Numbers which are simultaneously triangular and square pyramidal
satisfy the Diophantine equation
![]() |
(5) |
Completing the square gives
![]() |
(6) |
![]() |
(7) |
![]() |
(8) |
The only solutions are , (0, 0), (1, 1), (5, 10), (6, 13), and (85, 645) (Guy 1994, p. 147), corresponding to the nontrivial triangular square pyramidal numbers 1, 55, 91, 208335.
Numbers which are simultaneously tetrahedral and square pyramidal
satisfy the Diophantine equation
![]() |
(9) |
Beukers (1988) has studied the problem of finding solutions via integral points on an elliptic curve and found that the only solution is the trivial .
REFERENCES:
Anglin, W. S. "The Square Pyramid Puzzle." Amer. Math. Monthly 97, 120-124, 1990.
Anglin, W. S. The Queen of Mathematics: An Introduction to Number Theory. Dordrecht, Netherlands: Kluwer, 1995.
Baker, A. and Davenport, H. "The Equations and
." Quart J. Math. Ser. 2 20, 129-137, 1969.
Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recreations and Essays, 13th ed. New York: Dover, p. 59, 1987.
Beukers, F. "On Oranges and Integral Points on Certain Plane Cubic Curves." Nieuw Arch. Wisk. 6, 203-210, 1988.
Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, pp. 47-50, 1996.
Dickson, L. E. History of the Theory of Numbers, Vol. 2: Diophantine Analysis. New York: Dover, 2005.
Guy, R. K. "Figurate Numbers." §D3 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 147-150, 1994.
Kanagasabapathy, P. and Ponnudurai, T. "The Simultaneous Diophantine Equations and
." Quart. J. Math. Ser. 2 26, 275-278, 1975.
Ljunggren, W. "New Solution of a Problem Posed by E. Lucas." Nordisk Mat. Tidskrift 34, 65-72, 1952.
Lucas, É. Question 1180. Nouv. Ann. Math. Ser. 2 14, 336, 1875.
Lucas, É. Solution de Question 1180. Nouv. Ann. Math. Ser. 2 15, 429-432, 1877.
Ma, D. G. "An Elementary Proof of the Solution to the Diophantine Equation ." Sichuan Daxue Xuebao 4, 107-116, 1985.
Moret-Blanc, M. Question 1180. Nouv. Ann. Math. Ser. 2 15, 46-48, 1876.
Ogilvy, C. S. and Anderson, J. T. Excursions in Number Theory. New York: Dover, pp. 77 and 152, 1988.
Sloane, N. J. A. Sequence A000330/M3844 in "The On-Line Encyclopedia of Integer Sequences."
Watson, G. N. "The Problem of the Square Pyramid." Messenger. Math. 48, 1-22, 1918.
Wolf, T. "The Puzzle." https://home.tiscalinet.ch/t_wolf/tw/misc/squares.html.
الاكثر قراءة في نظرية الاعداد
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
