تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Square
المؤلف:
Coxeter, H. S. M. and Greitzer, S. L.
المصدر:
Geometry Revisited. Washington, DC: Math. Assoc. Amer
الجزء والصفحة:
...
28-12-2020
2260
Square
The term "square" can be used to mean either a square number (" is the square of
") or a geometric figure consisting of a convex quadrilateral with sides of equal length that are positioned at right angles to each other as illustrated above. In other words, a square is a regular polygon with four sides.
When used as a symbol, denotes a square geometric figure with given vertices, while
is sometimes used to denote a graph product (Clark and Suen 2000).
A square is a special case of an isosceles trapezoid, kite, parallelogram, quadrilateral, rectangle, rhombus, and trapezoid.
The diagonals of a square bisect one another and are perpendicular (illustrated in red in the figure above). In addition, they bisect each pair of opposite angles (illustrated in blue).
The perimeter of a square with side length is
![]() |
(1) |
and the area is
![]() |
(2) |
The inradius , circumradius
, and area
can be computed directly from the formulas for a general regular polygon with side length
and
sides,
![]() |
![]() |
![]() |
(3) |
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
The length of the polygon diagonal of the unit square is , sometimes known as Pythagoras's constant.
The equation
![]() |
(6) |
gives a square of circumradius 1, while
![]() |
(7) |
gives a square of circumradius .
The area of a square constructed inside a unit square as shown in the above diagram can be found as follows. Label and
as shown, then
![]() |
(8) |
![]() |
(9) |
Plugging (8) into (9) gives
![]() |
(10) |
Expanding
![]() |
(11) |
and solving for gives
![]() |
(12) |
Plugging in for yields
![]() |
(13) |
The area of the shaded square is then
![]() |
(14) |
(Detemple and Harold 1996).
The straightedge and compass construction of the square is simple. Draw the line and construct a circle having
as a radius. Then construct the perpendicular
through
. Bisect
and
to locate
and
, where
is opposite
. Similarly, construct
and
on the other semicircle. Connecting
then gives a square.
An infinity of points in the interior of a square are known whose distances from three of the corners of a square are rational numbers. Calling the distances ,
, and
where
is the side length of the square, these solutions satisfy
![]() |
(15) |
(Guy 1994). In this problem, one of ,
,
, and
is divisible by 3, one by 4, and one by 5. It is not known if there are points having distances from all four corners rational, but such a solution requires the additional condition
![]() |
(16) |
In this problem, is divisible by 4 and
,
,
, and
are odd. If
is not divisible by 3 (5), then two of
,
,
, and
are divisible by 3 (5) (Guy 1994).
The centers of four squares erected either internally or externally on the sides of a parallelograms are the vertices of a square (Yaglom 1962, pp. 96-97; Coxeter and Greitzer 1967, p. 84).
REFERENCES:
Clark, W. E. and Suen, S. "An Inequality Related to Vizing's Conjecture." Electronic J. Combinatorics 7, No. 1, N4, 1-3, 2000. https://www.combinatorics.org/Volume_7/Abstracts/v7i1n4.html.
Coxeter, H. S. M. and Greitzer, S. L. Geometry Revisited. Washington, DC: Math. Assoc. Amer., p. 84, 1967.
Detemple, D. and Harold, S. "A Round-Up of Square Problems." Math. Mag. 69, 15-27, 1996.
Dixon, R. Mathographics. New York: Dover, p. 16, 1991.
Eppstein, D. "Rectilinear Geometry." https://www.ics.uci.edu/~eppstein/junkyard/rect.html.
Fischer, G. (Ed.). Plate 1 in Mathematische Modelle aus den Sammlungen von Universitäten und Museen, Bildband. Braunschweig, Germany: Vieweg, p. 2, 1986.
Fukagawa, H. and Pedoe, D. "One or Two Circles and Squares," "Three Circles and Squares," and "Many Circles and Squares (Casey's Theorem)." §3.1-3.3 in Japanese Temple Geometry Problems. Winnipeg, Manitoba, Canada: Charles Babbage Research Foundation, pp. 37-42 and 117-125, 1989.
Gardner, M. The Sixth Book of Mathematical Games from Scientific American. Chicago, IL: University of Chicago Press, pp. 165 and 167, 1984.
Guy, R. K. "Rational Distances from the Corners of a Square." §D19 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 181-185, 1994.
Harris, J. W. and Stocker, H. "Square." §3.6.6 in Handbook of Mathematics and Computational Science. New York: Springer-Verlag, pp. 84-85, 1998.
Kern, W. F. and Bland, J. R. Solid Mensuration with Proofs, 2nd ed. New York: Wiley, p. 2, 1948.
Yaglom, I. M. Geometric Transformations I. New York: Random House, pp. 96-97, 1962.
الاكثر قراءة في نظرية الاعداد
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
