The exponential factorial is defined by the recurrence relation
![]() |
(1) |
where . The first few terms are therefore
![]() |
![]() |
![]() |
(2) |
![]() |
![]() |
![]() |
(3) |
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
... (OEIS A049384). The term has
digits.
The exponential factorial is therefore a kind of "factorial power tower."
The sum of the reciprocals of the exponential factorials is given by
![]() |
![]() |
![]() |
(6) |
![]() |
![]() |
![]() |
(7) |
(OEIS A080219). This sum is a Liouville number and is therefore transcendental.
REFERENCES:
Sloane, N. J. A. Sequences A049384 and A080219 in "The On-Line Encyclopedia of Integer Sequences."
|
|
دراسة تكشف "مفاجأة" غير سارة تتعلق ببدائل السكر
|
|
|
|
|
أدوات لا تتركها أبدًا في سيارتك خلال الصيف!
|
|
|
|
|
العتبة العباسية المقدسة تؤكد الحاجة لفنّ الخطابة في مواجهة تأثيرات الخطابات الإعلامية المعاصرة
|
|
|